Publications by authors named "Anderson S C Oliveira"

Joint compressive forces have been identified as a risk factor for osteoarthritis disease progression. Therefore, unloader braces are a common treatment with the aim of relieving pain, but their effects are not clearly documented in the literature. A knee brace concept was tested with the aim of reducing joint loads and pain in knee osteoarthritis patients by applying an extension moment exclusively during the stance phase.

View Article and Find Full Text PDF

This paper presents a knee brace design that applies an extension moment to unload the muscles in stance phase during gait, and thereby the knee, as alternative to conventional valgus braces for knee osteoarthritis patients. The concept was tested on one healthy subject during normal gait with a prototype, which was designed to activate and deactivate in order to apply the extension moment in the stance phase only and hereby avoid any interference during the swing phase. Electromyography measurements and musculoskeletal models were used to evaluate the brace effects on muscle activation and knee compressive forces, respectively.

View Article and Find Full Text PDF

The aim of the present study was to verify whether the expectation of perturbations while performing side-step cutting manoeuvres influences lower limb EMG activity, heel kinematics and ground reaction forces. Eighteen healthy men performed two sets of 90° side-step cutting manoeuvres. In the first set, 10 unperturbed trials (Base) were performed while stepping over a moveable force platform.

View Article and Find Full Text PDF

The aim of the present study was to verify whether strength training designed to improve explosive and maximal strength would influence rate of force development (RFD). Nine men participated in a 6-week knee extensors resistance training program and 9 matched subjects participated as controls. Throughout the training sessions, subjects were instructed to perform isometric knee extension as fast and forcefully as possible, achieving at least 90% maximal voluntary contraction as quickly as possible, hold it for 5 s, and relax.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of unilateral balance training on the reactive recovery of balance for both trained and untrained limbs. Twenty-three subjects were randomly assigned to either a control group (CG) or a training group (TG). The latter performed six weeks of balance training for the right leg.

View Article and Find Full Text PDF

Balance recovery during walking requires complex sensory-motor integration. Mechanisms to avoid falls are active concomitantly with human locomotion motor patterns. It has been suggested that gait can be described by a set of motor modules (synergies), but little is known on the modularity of gait during recovery of balance due to unexpected slips.

View Article and Find Full Text PDF

The aim of the study was to verify whether heel kinematics, ground reaction forces and electromyography (EMG) during walking are affected when anticipating slips in anterior-posterior (AP) and medial-lateral directions (ML). Eight healthy men walked through a 7-m walkway, stepping on a robotic force platform. Initially, baseline (BASE) gait mechanics were assessed with the platform at rest.

View Article and Find Full Text PDF