Publications by authors named "Anderson Gomes"

The introduction of optimized nanoheaters, which function as theranostic agents integrating both diagnostic and therapeutic processes, holds significant promise in the medical field. Therefore, developing strategies for selecting and utilizing optimized plasmonic nanoheaters is crucial for the effective use of nanostructured biomedical agents. This work elucidates the use of the Joule number (Jo) as a figure of merit to identify high-performance plasmonic theranostic agents.

View Article and Find Full Text PDF

The genus Rhinella corresponds to a group of anurans characterized by numerous taxonomic and systemic challenges, leading to their organization into species complexes. Cytogenetic data for this genus thus far are limited to the diploid number and chromosome morphology, which remain highly conserved among the species. In this study, we analyse the karyotypes of three species of the genus Rhinella (Rhinella granulosa, Rhinella margaritifera, and Rhinella marina) using both classical (conventional staining and C-banding) and molecular (FISH-fluorescence in situ hybridization with 18S rDNA, telomeric sequences, and microsatellite probes) cytogenetic approaches.

View Article and Find Full Text PDF

Objective: This study aimed to analyze the scope, nature, and extent of the applicability of terahertz (THz) spectroscopy in dentistry.

Study Design: A scoping review was conducted following the 5-step methodology of Arksey and O'Malley, the PRISMA-ScR checklist, and the Evidence Synthesis Manual of the Joanna Briggs Institute. Electronic literature searches were performed in the PubMed/MEDLINE, Scopus, and Cochrane Library databases, including full-text articles with no specific publication period.

View Article and Find Full Text PDF

Spin glass theory, as a paradigm for describing disordered magnetic systems, constitutes a prominent subject of study within statistical physics. Replica symmetry breaking (RSB), as one of the pivotal concepts for the understanding of spin glass theory, means that under identical conditions, disordered systems can yield distinct states with nontrivial correlations. Random fiber laser (RFL) based on Rayleigh scattering (RS) is a complex disordered system, owing to the disorder and stochasticity of RS.

View Article and Find Full Text PDF

Modulation of scattering in random lasers (RLs) by magnetic fields has attracted much attention due to its rich physical insights. We fabricate magnetic gain polymer optical fiber to generate RLs. From macroscopic experimental phenomena, with the increase of the magnetic field strength, the magnetic transverse photocurrent exists in disordered multiple scattering of RLs and the emission intensity of RLs decreases, which is the experimental observation of photonic Hall effect (PHE) and photonic magnetoresistance (PMR) in RLs.

View Article and Find Full Text PDF

We report the first experimental demonstration of the replica symmetry breaking (RSB) phenomenon in a fiber laser system supporting standard mode-locking (SML) regime. Though theoretically predicted, this photonic glassy phase remained experimentally undisclosed so far. We employ an ytterbium-based mode-locked fiber laser with a very rich phase diagram.

View Article and Find Full Text PDF

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is the etiological agent responsible for the global outbreak of COVID-19 (Coronavirus Disease 2019). The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a vital role in mediating viral replication and transcription. In this study, a comprehensive computational approach was employed to investigate the binding affinity, selectivity, and stability of natural product candidates as potential new antivirals acting on the viral polyprotein processing mediated by SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

Objective: This study aimed to assess the effect of titanium dioxide (TiO) and silver (Ag) nanoparticles dispersed in glycerol or water, serving as optical clearing agents nanocolloids (OCAs-NC), for improving optical coherence tomography (OCT) images and highlighting incipient lesions in ex vivo human teeth.

Materials And Methods: Twelve human teeth with incipient lesions were divided into seven groups according to the OCA-NC; they were subjected to G1 (air), G2 (glycerol), G3 (TiO 0.1%), G4 (TiO 0.

View Article and Find Full Text PDF

Ever since the mid-1960's, locking the phases of modes enabled the generation of laser pulses of duration limited only by the uncertainty principle, opening the field of ultrafast science. In contrast to conventional lasers, mode spacing in random lasers is ill-defined because optical feedback comes from scattering centres at random positions, making it hard to use mode locking in transform limited pulse generation. Here the generation of sub-nanosecond transform-limited pulses from a mode-locked random fibre laser is reported.

View Article and Find Full Text PDF

Given the importance of the endothelial cell phenotype in dental peri-implant healing processes, the aim of this study was to better assess the involvement of endothelial cells responding to cobalt-chromium (CoCr)-enriched medium. Biologically, cobalt is widely used molecule to induce chemical experimental hypoxia because it stabilizes hypoxia inducible factors (HIF1α). The aplication of hypoxia models provides better experimental condition to allow its impact on cellular metabolism, by looking for biochemical and molecular issues.

View Article and Find Full Text PDF

Aim: This study aims to incorporate alginate microparticles containing berberine and fluconazole into two different types of pharmaceutical formulations, to subsequently evaluate the antifungal activity against Candida albicans.

Methods And Results: Alginate microparticles containing BBR (berberine) and FLU (fluconazole) were produced by the spray-drying technique, characterized and incorporated in two pharmaceutical formulations, a vaginal cream and artificial saliva. Broth microdilution, checkerboard, time-kill curve, and scanning electron microscopy were carried out to determine the antifungal effects of BBR and FLU against C.

View Article and Find Full Text PDF

Background: The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure.

View Article and Find Full Text PDF

This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Propolis is a bee product used in folk medicine to treat inflammatory diseases. Diverse types of propolis are produced worldwide depending on the local flora. Recently, research has been focused on a propolis sample produced in the northeast Brazilian "caatinga" from Mimosa tenuiflora, popularly known as "jurema-preta".

View Article and Find Full Text PDF

The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light-matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS, MoSe, MoTe, WS, semimetallic WTe, ZrTe, and metallic NbS and NbSe.

View Article and Find Full Text PDF

The 2022 Latin America Optics and Photonics Conference (LAOP 2022), the major international conference sponsored by Optica in Latin America, returned to Recife, Pernambuco, Brazil, after its first edition in 2010. Held every two years since (except for 2020), LAOP has the explicit objective to promote Latin American excellence in optics and photonics research and support the regional community. In the 6th edition in 2022, it featured a comprehensive technical program with recognized experts in fields critical to Latin America, highly multidisciplinary, with themes from biophotonics to 2D materials.

View Article and Find Full Text PDF

This study aimed to evaluate the behavior of spiral polishing systems in restorative materials through optical coherence tomography (OCT). Performance of spiral polishers specific to resin and ceramics were evaluated. The surface roughness of restorative materials was measured, and images of the polishers were acquired by OCT and stereomicroscope.

View Article and Find Full Text PDF

By employing the optical Kerr gate technique at 800 nm with 180 fs pulses at 76 MHz, we evaluated the third-order nonlinear optical response of two-dimensional (2D) semiconducting MoS, semimetallic ZrTe, and metallic NbS and NbSe. The modulus of the nonlinear refractive index was measured to range from 8.6 × 10 m/W to 5.

View Article and Find Full Text PDF

Aim: The success of dental implants depends on osseointegration can be compromised by well-known related adverse biological processes, such as infection and diabetes. Previously, nanohydroxyapatite-coated titanium surfaces (nHA_DAE) have been shown to contain properties that promote osteogenesis by enhancing osteoblast differentiation. In addition, it was hypothesized to drive angiogenesis in high-glucose microenvironments, mimicking diabetes mellitus (DM).

View Article and Find Full Text PDF

Purpose: Obesity has increased around the world. Obese individuals need to be better assisted, with special attention given to dental and medical specialties. Among obesity-related complications, the osseointegration of dental implants has raised concerns.

View Article and Find Full Text PDF

The recent development and mass administration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines allowed for disease control, reducing hospitalizations and mortality. Most of these vaccines target the SARS-CoV-2 Spike (S) protein antigens, culminating with the production of neutralizing antibodies (NAbs) that disrupt the attachment of the virus to ACE2 receptors on the host cells. However, several studies demonstrated that the NAbs typically rise within a few weeks after vaccination but quickly reduce months later.

View Article and Find Full Text PDF

The encapsulation of drugs in micro and nanocarriers has helped to resolve mechanisms of cellular resistance and decrease drug side effects as well. In this study, poly(D,L-lactide-co-glycolide) (PLGA) was used to encapsulate the Euphol active substance-containing latex from Euphorbia tirucalli (E-latex). The nanoparticles (NP) were prepared using the solvent evaporation method and the physical and chemical properties were evaluated using spectrophotometric techniques.

View Article and Find Full Text PDF

The authors experimentally demonstrate the operation of a lasing phase-sensitive optical time-domain reflectometer (Φ-OTDR) based on random feedback from a sensing fiber. Here, the full output of the laser provides the sensing signal, in contrast to the small backscattered signal measured in a conventional OTDR. In this proof-of-principle demonstration, the laser operates as a distributed vibration sensor with signal-to-noise ratio of 23-dB and 1.

View Article and Find Full Text PDF

Ethanol and water form an azeotropic mixture at an ethanol molecular percentage of ∼91% (∼96% by volume), which prohibits ethanol from being further purified distillation. Aqueous solutions at different concentrations in ethanol have been studied both experimentally and theoretically. We performed cylindrical micro-jet photoelectron spectroscopy, excited by synchrotron radiation, 70 eV above C1s ionization threshold, providing optimal atomic-scale surface-probing.

View Article and Find Full Text PDF

The binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor expressed on the host cells is a critical initial step for viral infection. This interaction is blocked through competitive inhibition by soluble ACE2 protein. Therefore, developing high-affinity and cost-effective ACE2 mimetic ligands that disrupt this protein-protein interaction is a promising strategy for viral diagnostics and therapy.

View Article and Find Full Text PDF