Background: p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor β (TGFβ) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFβ activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFβ and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported.
View Article and Find Full Text PDFDetermining the levels of protein-protein interactions is essential for the analysis of signaling within the cell, characterization of mutation effects, protein function and activation in health and disease, among others. Herein, we describe MolBoolean - a method to detect interactions between endogenous proteins in various subcellular compartments, utilizing antibody-DNA conjugates for identification and signal amplification. In contrast to proximity ligation assays, MolBoolean simultaneously indicates the relative abundances of protein A and B not interacting with each other, as well as the pool of A and B proteins that are proximal enough to be considered an AB complex.
View Article and Find Full Text PDFActivator protein (AP)-1 transcription factors are essential elements of the pro-oncogenic functions of transforming growth factor-β (TGFβ)-SMAD signaling. Here we show that in multiple HER2+ and/or EGFR+ breast cancer cell lines these AP-1-dependent tumorigenic properties of TGFβ critically rely on epidermal growth factor receptor (EGFR) activation and expression of the ΔN isoform of transcriptional regulator p63. EGFR and ΔNp63 enabled and/or potentiated the activation of a subset of TGFβ-inducible invasion/migration-associated genes, e.
View Article and Find Full Text PDFTransforming growth factor-β (TGFβ) has both tumor-suppressive and tumor-promoting effects in breast cancer. These functions are partly mediated through Smads, intracellular transcriptional effectors of TGFβ. Smads form complexes with other DNA-binding transcription factors to elicit cell-type-dependent responses.
View Article and Find Full Text PDFIt is well established that transforming growth factor-β (TGFβ) switches its function from being a tumor suppressor to a tumor promoter during the course of tumorigenesis, which involves both cell-intrinsic and environment-mediated mechanisms. We are interested in breast cancer cells, in which SMAD mutations are rare and interactions between SMAD and other transcription factors define pro-oncogenic events. Here, we have performed chromatin immunoprecipitation (ChIP)-sequencing analyses which indicate that the genome-wide landscape of SMAD2/3 binding is altered after prolonged TGFβ stimulation.
View Article and Find Full Text PDFThe p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) is a multifunctional cytokine which stimulates the differentiation of fibroblasts into myofibroblasts. Myofibroblasts are critical for normal wound healing, but also accumulate pathologically in a number of chronic inflammatory conditions where they are key contributors to aberrant tissue remodeling and fibrosis, and in cancer stroma. In the current study, we identified a role for tamoxifen as a potent inhibitor of the TGF-β-mediated activation of primary human skin and breast fibroblasts.
View Article and Find Full Text PDFAn excessive intake of vitamin A has been associated with an increased risk of fractures in humans. In animals, a high vitamin A intake leads to a reduction of long bone diameter and spontaneous fractures. Studies in rodents indicate that the bone thinning is due to increased periosteal bone resorption and reduced radial growth.
View Article and Find Full Text PDFSmad proteins are the key intermediates of transforming growth factor-beta (TGF-β) signaling during development and in tissue homeostasis. Pertubations in TGF-β/Smad signaling have been implicated in cancer and other diseases. In the cell nucleus, Smad complexes trigger cell type- and context-specific transcriptional programs, thereby transmitting and integrating signals from a variety of ligands of the TGF-β superfamily and other stimuli in the cell microenvironment.
View Article and Find Full Text PDFBackground: The transforming growth factor (TGF)-β superfamily comprises cytokines such as TGF-β and Bone Morphogenetic Proteins (BMPs), which have a critical role in a multitude of biological processes. In breast cancer, high levels of TGF-β are associated with poor outcome, whereas inhibition of TGF-β-signaling reduces metastasis. In contrast, BMP-7 inhibits bone metastasis of breast cancer cells.
View Article and Find Full Text PDFVitamin A (retinol) is the only molecule known to induce spontaneous fractures in laboratory animals and we have identified retinol as a risk factor for fracture in humans. Since subsequent observational studies in humans and old animal data both show that high retinol intake appears to only have small effects on bone mineral density (BMD) we undertook a mechanistic study of how excess retinol reduces bone diameter while leaving BMD essentially unaffected. We fed growing rats high doses of retinol for only 1 week.
View Article and Find Full Text PDFIt has been shown that high vitamin A intake is associated with bone fragility and fractures in both animals and humans. However, the mechanism by which vitamin A affects bones is unclear. In the present study, the direct effects of retinoic acid (RA) on human and murine osteoclastogenesis were evaluated using cultured peripheral blood CD14(+) monocytes and RAW264.
View Article and Find Full Text PDFNF-κB activation is a critical component in the transcriptional response to hypoxia. However, the underlying mechanisms that control its activity under these conditions are unknown. Here we report that under hypoxic conditions, IκB kinase (IKK) activity is induced through a calcium/calmodulin-dependent kinase 2 (CaMK2)-dependent pathway distinct from that for other common inducers of NF-κB.
View Article and Find Full Text PDFSeveral studies have shown that ribosomal proteins (RPs) are important mediators of p53 activation in response to nucleolar disruption; however, the pathways that control this signalling function of RPs are currently unknown. We have recently shown that RPs are targets for the ubiquitin-like molecule NEDD8, and that NEDDylation protects RPs from destabilization. Here, we identify NEDD8 as a crucial regulator of L11 RP signalling to p53.
View Article and Find Full Text PDFIdentification of the molecular targets for post-translational modifications is an important step for explaining the regulated pathways. The ubiquitin-like molecule NEDD8 is implicated in the regulation of cell proliferation, viability and development. By combining proteomics and in vivo NEDDylation assays, we identified a subset of ribosomal proteins as novel targets for the NEDD8 pathway.
View Article and Find Full Text PDFThe sterol regulatory element binding protein (SREBP) family of transcription factors controls cholesterol and lipid metabolism. The nuclear forms of these proteins are rapidly degraded by the ubiquitin-proteasome pathway, but the signals and factors required for this are unknown. Here, we identify a phosphodegron in SREBP1a that serves as a recognition motif for the SCF(Fbw7) ubiquitin ligase.
View Article and Find Full Text PDFThe present review aims at highlighting selective aspects of the medical risks in epilepsy and their prevention. Emphasis is put on accidents and physical injuries, including risk factors and effectiveness of prevention; mortality, its causes, risk factors and prevention of seizure-related deaths, as well as traffic accidents, their risk factors and the effectiveness of prevention. Accidents and injuries are slightly more frequent among people with epilepsy than in the general population.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2003
Cholesterol metabolism is tightly controlled by members of the sterol regulatory element-binding protein (SREBP) family of transcription factors. Here we demonstrate that the ubiquitination and degradation of SREBPs depend on their transcriptional activity. Mutations in the transactivation or DNA-binding domains of SREBPs inhibit their transcriptional activity and stabilize the proteins.
View Article and Find Full Text PDFA previous study of 34 nuclear pedigrees segregating juvenile myoclonic epilepsy (JME) gave significant evidence of linkage with heterogeneity to marker loci on chromosome 15q13-14 close to the candidate gene CHRNA7 (Hum. Mol. Genet.
View Article and Find Full Text PDF