Background: Psilocin, the neuroactive metabolite of psilocybin, is a serotonergic psychedelic that induces an acute altered state of consciousness, evokes lasting changes in mood and personality in healthy individuals, and has potential as an antidepressant treatment. Examining the acute effects of psilocin on resting-state time-varying functional connectivity implicates network-level connectivity motifs that may underlie acute and lasting behavioral and clinical effects.
Aim: Evaluate the association between resting-state time-varying functional connectivity (tvFC) characteristics and plasma psilocin level (PPL) and subjective drug intensity (SDI) before and right after intake of a psychedelic dose of psilocybin in healthy humans.
Metastable microstates in electro- and magnetoencephalographic (EEG and MEG) measurements are usually determined using modified -means accounting for polarity invariant states. However, hard state assignment approaches assume that the brain traverses microstates in a discrete rather than continuous fashion. We present multimodal, multisubject directional archetypal analysis as a scale and polarity invariant extension to archetypal analysis using a loss function based on the Watson distribution.
View Article and Find Full Text PDFHormonal contraceptive drugs are used by adolescent and adult women worldwide. Increasing evidence from human neuroimaging research indicates that oral contraceptives can alter regional functional brain connectivity and brain chemistry. However, questions remain regarding static whole-brain and dynamic network-wise functional connectivity changes.
View Article and Find Full Text PDFObjectives: To determine how resistance to macrolides is conferred in field isolates of Pasteurella multocida and Mannheimia haemolytica that lack previously identified resistance determinants for rRNA methylation, efflux and macrolide-modifying enzymes.
Methods: Isolates of P. multocida and M.
The prokaryotic Sm-like protein Hfq plays an essential role in the stability and function of trans-encoded small regulatory RNAs in enterobacteria that function in posttranscriptional control by base-pairing with cognate target mRNAs. Hfq associates with both regulatory RNA and target RNA, and its interaction promotes annealing. So far, mutational and structural studies have established that Escherichia coli Hfq contains two separate RNA binding sites that are part of the conserved N-terminal portion of the protein.
View Article and Find Full Text PDFSmall trans-encoded RNAs (sRNAs) modulate the translation and decay of mRNAs in bacteria. In Gram-negative species, antisense regulation by trans-encoded sRNAs relies on the Sm-like protein Hfq. In contrast to this, Hfq is dispensable for sRNA-mediated riboregulation in the Gram-positive species studied thus far.
View Article and Find Full Text PDFIn Listeria monocytogenes, the alternative sigma factor sigma(B) plays important roles in stress tolerance and virulence. Here, we present the identification of SbrA, a novel small noncoding RNA that is produced in a sigma(B)-dependent manner. This finding adds the sigma(B) regulon to the growing list of stress-induced regulatory circuits that include small noncoding RNAs.
View Article and Find Full Text PDFBackground: We examined prescription of the opioids used most often in cancer pain relief in the Norwegian counties, doctors' use of the law section concerning reimbursement of medicine to incurable far advanced cancer patients, and the prescription of analgesics with codein to this patient group.
Material And Method: Data were retrieved from The Norwegian prescription database for the period 01.01.