Introduction: NK cells can mediate tumor cell killing by natural cytotoxicity and by antibody-dependent cell-mediated cytotoxicity (ADCC), an anti-tumor mechanism mediated through the IgG Fc receptor CD16A (FcγRIIIA). CD16A polymorphisms conferring increased affinity for IgG positively correlate with clinical outcomes during monoclonal antibody therapy for lymphoma, linking increased binding affinity with increased therapeutic potential via ADCC. We have previously reported on the FcγR fusion CD64/16A consisting of the extracellular region of CD64 (FcγRI), a high-affinity Fc receptor normally expressed by myeloid cells, and the transmembrane/cytoplasmic regions of CD16A, to create a highly potent and novel activating fusion receptor.
View Article and Find Full Text PDFBackground: Natural killer (NK) cells are being extensively studied as a cell therapy for cancer. These cells are activated by recognition of ligands and antigens on tumor cells. Cytokine therapies, such as IL-15, are also broadly used to stimulate endogenous and adoptively transferred NK cells in patients with cancer.
View Article and Find Full Text PDFBackground: NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients.
View Article and Find Full Text PDFBackground: Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC.
View Article and Find Full Text PDFThe human leukocyte antigen G1 (HLA-G1), a non-classical class I major histocompatibility complex (MHC-I) protein, is a potent immunomodulatory molecule at the maternal/fetal interface and other environments to regulate the cellular immune response. We created GGTA1/HLAG1 pigs to explore their use as organ and cell donors that may extend xenograft survival and function in both preclinical nonhuman primate (NHP) models and future clinical trials. In the present study, HLA-G1 was expressed from the porcine ROSA26 locus by homology directed repair (HDR) mediated knock-in (KI) with simultaneous deletion of α-1-3-galactotransferase gene (GGTA1; GTKO) using the clustered regularly interspersed palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas9) gene-editing system.
View Article and Find Full Text PDFIntroduction: Macrophages contribute to xenograft rejection by direct cytotoxicity and by amplifying T cell-mediated immune responses. It has been shown that transgenic expression of hCD47 protects porcine cells from human macrophages by restoring the CD47-SIRPα self-recognition signal. It has also been reported that the long 3' untranslated region (3'UTR) of the hCD47 gene, which is missing from constructs previously used to make hCD47 transgenic pigs, is critical for efficient cell surface expression in human cells.
View Article and Find Full Text PDFThe CRISPR/Cas9 gene editing system has enhanced the development of genetically engineered animals for use in xenotransplantation. Potential limitations to the CRISPR/Cas9 system impacting the development of genetically engineered cells and animals include the creation of off-target mutations. We sought to develop a method to reduce the likelihood of off-target mutation while maintaining a high efficiency rate of desired genetic mutations for the GGTA1 gene.
View Article and Find Full Text PDFHandmade cloning is a zona-free nuclear transfer approach and an economical, efficient, and simple micromanipulation-free alternative to dolly based traditional cloning (TC). In this study, based on handmade cloning with minor modifications, an optimized bi-oocyte fusion (BOF) cloning method was established to produce GGTA1 KO porcine embryos using the CRISPR/Cas9 gene editing system. The GGTA1 gene is responsible for the generation of Gal epitopes on the surface of porcine cells, triggering hyperacute immune rejection in preclinical porcine-to-human xenotransplantation.
View Article and Find Full Text PDF