Publications by authors named "Anders G Finstad"

Climate change is anticipated to cause species to shift their ranges upward and poleward, yet space for tracking suitable habitat conditions may be limited for range-restricted species at the highest elevations and latitudes of the globe. Consequently, range-restricted species inhabiting Arctic freshwater ecosystems, where global warming is most pronounced, face the challenge of coping with changing abiotic and biotic conditions or risk extinction. Here, we use an extensive fish community and environmental dataset for 1762 lakes sampled across Scandinavia (mid-1990s) to evaluate the climate vulnerability of Arctic char (Salvelinus alpinus), the world's most cold-adapted and northernly distributed freshwater fish.

View Article and Find Full Text PDF
Article Synopsis
  • Biodiversity data is essential for conservation efforts, but taxonomic misclassifications can skew the results of species distribution models.
  • This study introduces a multi-species distribution model that accounts for variable classification probabilities rather than assuming they're constant, leading to better predictions of species distributions.
  • The model showed a 30% increase in predicting true species identities' precision, and a 70% improvement in accuracy when using machine learning scores for classification, although it didn't significantly enhance predictions in smaller datasets.
View Article and Find Full Text PDF

Citizen science and automated collection methods increasingly depend on image recognition to provide the amounts of observational data research and management needs. Recognition models, meanwhile, also require large amounts of data from these sources, creating a feedback loop between the methods and tools. Species that are harder to recognize, both for humans and machine learning algorithms, are likely to be under-reported, and thus be less prevalent in the training data.

View Article and Find Full Text PDF

Browning of Fennoscandian boreal lakes is raising concerns for negative ecosystem impacts as well as reduced drinking water quality. Declined sulfur deposition and warmer climate, along with afforestation, other climate impacts and less outfield grazing, have resulted in increased fluxes of Total Organic Carbon (TOC) from catchments to freshwater, and subsequently to coastal waters. This study assesses the major governing factors for increased TOC levels among several catchment characteristics in almost 5000 Fennoscandian lakes and catchments.

View Article and Find Full Text PDF

The skills and knowledge needed to recognize and classify taxa are becoming increasingly scarce in the scientific community. At the same time, it is clear that these skills are strongly needed in biodiversity monitoring for management and conservation, especially when carried out by citizen scientists. Formalizing the required knowledge in the form of digital identification keys is one way of making such knowledge more available for professional and amateur observers of biodiversity.

View Article and Find Full Text PDF

Climate change has dramatic impacts on ecological systems, affecting a range of ecological factors including phenology, species abundance, diversity, and distribution. The breadth of climate change impacts on ecological systems leads to the occurrence of fingerprints of climate change. However, climate fingerprints are usually identified across broad geographical scales and are potentially influenced by publication biases.

View Article and Find Full Text PDF

Technological advances and data availability have enabled artificial intelligence-driven tools that can increasingly successfully assist in identifying species from images. Especially within citizen science, an emerging source of information filling the knowledge gaps needed to solve the biodiversity crisis, such tools can allow participants to recognize and report more poorly known species. This can be an important tool in addressing the substantial taxonomic bias in biodiversity data, where broadly recognized, charismatic species are highly over-represented.

View Article and Find Full Text PDF

Chemical eradication of non-native species has become a widely used method to mitigate the potential negative impacts of altered competitive or predatory dynamics on biodiversity and natural ecosystem processes. However, the responses of non-target species can vary from rapid full recovery to delayed or absent recolonization, and little is known about the potential shifts in resource use and trophic diversity of native species following chemical treatments. We used a before-after-control-impact approach to study the effects of rotenone piscicide treatment on abundance and trophic niche of benthic invertebrates in three untreated and three treated lakes in central Norway, the latter group hosting non-native roach (Rutilus rutilus) and pike (Esox lucius) prior to rotenone treatment.

View Article and Find Full Text PDF

Presence-only biodiversity data are increasingly relied on in biodiversity, ecology, and conservation research, driven by growing digital infrastructures that support open data sharing and reuse. Recent reviews of open biodiversity data have clearly documented the value of data sharing, but the extent to which the biodiversity research community has adopted open data practices remains unclear. We address this question by reviewing applications of presence-only primary biodiversity data, drawn from a variety of sources beyond open databases, in the indexed literature.

View Article and Find Full Text PDF

Due to global climate change-induced shifts in species distributions, estimating changes in community composition through the use of Species Distribution Models has become a key management tool. Being able to determine how species associations change along environmental gradients is likely to be pivotal in exploring the magnitude of future changes in species' distributions. This is particularly important in connectivity-limited ecosystems, such as freshwater ecosystems, where increased human translocation is creating species associations over previously unseen environmental gradients.

View Article and Find Full Text PDF

Competition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and the individual body size may shape the effects of interspecific interactions on species' niche width. Here we study the effects of interspecific and intraspecific interactions, lake area and altitude, and fish body size on the trophic niche width and resource use of a generalist predator, the littoral-dwelling large, sparsely rakered morph of European whitefish (Coregonus lavaretus; hereafter LSR whitefish).

View Article and Find Full Text PDF

Climate-induced plasticity in functional traits has received recent attention due to the immense importance phenotypic variation plays in population level responses. Here, we explore the effect of different climate-change scenarios on lentic populations of a freshwater ectotherm, the brown trout (Salmo trutta L.), through climate effects on functional traits.

View Article and Find Full Text PDF

Species occurrence data records the location and time of an encounter with a species, and is valuable for many aspects of ecological and evolutionary analyses. A key distinction within species occurrence data is between (1) collected and preserved specimens that can be taxonomically validated (i.e.

View Article and Find Full Text PDF

We here report the first sign of amphibian recovery after a strong decline due to acidic precipitation over many decades and peaking around 1980-90. In 2010, the pH level of ponds and small lakes in two heavily acidified areas in southwestern Scandinavia (Aust-Agder and Østfold in Norway) had risen significantly at an (arithmetic) average of 0.14 since 1988-89.

View Article and Find Full Text PDF

Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems.

View Article and Find Full Text PDF

Climatic factors influence the interactions among trophic levels in an ecosystem in multiple ways. However, whereas most studies focus on single factors in isolation, mainly due to interrelation and correlation among drivers complicating interpretation and analyses, there are still only few studies on how multiple ecosystems respond to climate related factors at the same time. Here, we use a hierarchical Bayesian model with a bioenergetic predator-prey framework to study how different climatic factors affect trophic interactions and production in small Arctic lakes.

View Article and Find Full Text PDF

While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e.

View Article and Find Full Text PDF

Increased concentrations of dissolved organic carbon (DOC), often labelled "browning", is a current trend in northern, particularly boreal, freshwaters. The browning has been attributed to the recent reduction in sulphate (S) deposition during the last 2 to 3 decades. Over the last century, climate and land use change have also caused an increasing trend in vegetation cover ("greening"), and this terrestrially fixed carbon represents another potential source for export of organic carbon to lakes and rivers.

View Article and Find Full Text PDF

Species' response to abiotic environmental variation can be influenced by local community structure and interspecific interactions, particularly in restricted habitats such as islands and lakes. In temperate lakes, future increase in water temperature and run-off of terrestrial (allochthonous) dissolved organic carbon (DOC) are predicted to alter community composition and the overall ecosystem productivity. However, little is known about how the present community structure and abiotic environmental variation interact to affect the abundance of native fish populations.

View Article and Find Full Text PDF

Here, we demonstrate a contrasting effect of terrestrial coloured dissolved organic material on the secondary production of boreal nutrient poor lakes. Using fish yield from standardised brown trout gill-net catches as a proxy, we show a unimodal response of lake secondary productivity to dissolved organic carbon (DOC). This suggests a trade-off between positive and negative effects, where the initial increase may hinge upon several factors such as energy subsidising, screening of UV-radiation or P and N load being associated with organic carbon.

View Article and Find Full Text PDF

The negative relationship between body mass and population abundance was documented decades ago and forms one of the most fundamental scaling-laws in ecology. However, current theory fails to capture observed variations and the subject continues to raise controversy. Here we unify empirically observed size-abundance relationships with theory, by incorporating allometries in resource encounter rate and metabolic costs of movements.

View Article and Find Full Text PDF

The reaction norm between growth rate, age and size at maturity in ectotherms is widely debated in ecological literature. It has been proposed that the effect depends on whether growth is affected by food quality or temperature (called the Berrigan-Charnov puzzle). The present experiment tested this for Atlantic salmon (Salmo salar).

View Article and Find Full Text PDF

Obtaining accurate estimates of diversity indices is difficult because the number of species encountered in a sample increases with sampling intensity. We introduce a novel method that requires that the presence of species in a sample to be assessed while the counts of the number of individuals per species are only required for just a small part of the sample. To account for species included as incidence data in the species abundance distribution, we modify the likelihood function of the classical Poisson log-normal distribution.

View Article and Find Full Text PDF

One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.

View Article and Find Full Text PDF

1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions.

View Article and Find Full Text PDF