Publications by authors named "Anders E G Lindgren"

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells.

View Article and Find Full Text PDF

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range.

View Article and Find Full Text PDF

, a major cause of pneumonia, sepsis, and meningitis worldwide, has the nasopharynges of small children as its main ecological niche. Depletion of pneumococci from this niche would reduce the disease burden and could be achieved using small molecules with narrow-spectrum antibacterial activity. We identified the alkylated dicyclohexyl carboxylic acid 2CCA-1 as a potent inducer of autolysin-mediated lysis of , while having low activity against 2CCA-1-resistant strains were found to have inactivating mutations in , known to be required for uptake of host polyunsaturated fatty acids, as well as through inactivation of the transcriptional regulator gene , vital for endogenous, fatty acid synthesis regulation.

View Article and Find Full Text PDF

A BF·OEt catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several -alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid β fibrils .

View Article and Find Full Text PDF

infections are a global health problem and new approaches to treat with drugs of high specificity would be valuable. A library of substituted ring fused 2-pyridones has been synthesized and evaluated for their ability to attenuate infectivity. pharmacokinetic studies were performed, with the best candidates demonstrating that a C8-methylsulfonamide substituent improved pharmacokinetic properties important for oral administration.

View Article and Find Full Text PDF

() killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of that are resistant to frontline antibiotics.

View Article and Find Full Text PDF

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades.

View Article and Find Full Text PDF

Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy.

View Article and Find Full Text PDF

In high-throughput screening (HTS) a robust assay is used to interrogate a large collection of small organic molecules in order to find compounds, hits, with a desired biological activity. The hits are then further explored by an iterative process where new compounds are designed, purchased, or synthesized, followed by an evaluation in one or more assays. Statistical molecular design (SMD) is a useful method to select a balanced, varied, and information-rich compound collection based on hits from HTS in order to create a foundation for development of optimized compounds with improved properties.

View Article and Find Full Text PDF

The racemic 3-(4-oxo-3,4-dihydroquinazolin-2-yl)-N-[1-(pyridin-2-yl)ethyl]propanamide, 1, has previously been identified as a potent but unselective inhibitor of diphtheria toxin-like ADP-ribosyltransferase 3 (ARTD3). Herein we describe synthesis and evaluation of 55 compounds in this class. It was found that the stereochemistry is of great importance for both selectivity and potency and that substituents on the phenyl ring resulted in poor solubility.

View Article and Find Full Text PDF

Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation.

View Article and Find Full Text PDF

Inhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme family suggests selectivity for ARTD3, and crystal structures illustrate the molecular basis for inhibitor selectivity.

View Article and Find Full Text PDF

The diphtheria toxin-like ADP-ribosyltransferases (ARTDs) are an enzyme family that catalyzes the transfer of ADP-ribose units onto substrate proteins by using nicotinamide adenine dinucleotide (NAD(+)) as a cosubstrate. They have a documented role in chromatin remodelling and DNA repair, and inhibitors of ARTD1 and 2 (PARP1 and 2) are currently in clinical trials for the treatment of cancer. The detailed function of most other ARTDs is still unknown.

View Article and Find Full Text PDF

Antibacterial resistance is today a worldwide problem and the demand for new classes of antibacterial agents with new mode of action is enormous. In the strive for new antibacterial agents that inhibit pilus assembly, an important virulence factor, routes to introduce triazoles in position 8 and 2 of ring-fused bicyclic 2-pyridones have been developed. This was made via Sonogashira couplings followed by Huisgen 1,3-dipolar cycloadditions.

View Article and Find Full Text PDF