Oromucosal administration is an attractive non-invasive route. However, drug absorption is challenged by salivary flow and the mucosa being a significant permeability barrier. The aim of this study was to design and investigate a multi-layered nanofiber-on-foam-on-film (NFF) drug delivery system with unique properties and based on polysaccharides combined as i) mucoadhesive chitosan-based nanofibers, ii) a peptide loaded hydroxypropyl methylcellulose foam, and iii) a saliva-repelling backing film based on ethylcellulose.
View Article and Find Full Text PDFThe aim of Quantitative mass spectrometry imaging (Q-MSI) is to provide distribution analysis and quantitation from one single mass-spectrometry-based experiment, and several quantitation methods have been devised for Q-MSI. Mimetic tissue models based on spiked tissue homogenates are considered one of the most accurate ways to perform Q-MSI, since the analyte is present in a well-defined concentration in a sample matrix highly similar to the one of the unknown sample to be analyzed. The delivery of drugs in skin is among the most frequent types of pharmaceutical MSI studies.
View Article and Find Full Text PDFBackground: Patients with hypertrophic scars (HTS) risk reduced quality of life due to itching, pain, poor cosmesis, and restriction of movement. Despite good clinical efficacy, patients are often reluctant to undergo repeated needle injections due to pain or needle phobia.
Objectives: To evaluate the applicability of needle-free pneumatic jet injection (PJI) and assess changes in hypertrophic scars following a single PJI treatment with 5-fluorouracil (5-FU) and triamcinolone acetonide (TAC).
Background: Intralesional bleomycin (BLM) administration by needle injection is effective for keloids and warts but has significant drawbacks, including treatment-related pain and operator-depended success rates. Electronic pneumatic injection (EPI) is a promising, less painful, needle-free method that potentially enables precise and controlled dermal drug delivery. Here, we aimed to explore the cutaneous pharmacokinetics, biodistribution patterns, and tolerability of BLM administered by EPI .
View Article and Find Full Text PDFBleomycin (BLM) is being repositioned in dermato-oncology for intralesional and intra-tumoural use. Although conventionally administered by local needle injections (NIs), ablative fractional lasers (AFLs) can facilitate topical BLM delivery. Adding local electroporation (EP) can augment intracellular uptake in the target tissue.
View Article and Find Full Text PDF