The popular sweetener, aspartame, is an agonist of the tongue's sweet taste receptor. How water molecules affect its conformation or which aspartame atoms are more prone to interact with solvent are helpful questions to understand its activity in different environments. Here, the combination of IR-UV spectroscopic techniques with computational simulations has been successfully applied to characterize aspartame·water clusters, showing that the addition of water molecules simplifies the conformational panorama of aspartame, favoring the formation of folded structures by interaction with the polar part of the molecule.
View Article and Find Full Text PDFBoth sugars and lipids are important biomolecular building blocks with exceptional conformational flexibility and adaptability to their environment. Glycolipids bring together these two molecular components in the same assembly and combine the complexity of their conformational landscapes. In the present study, we have used selective double resonance vibrational spectroscopy, in combination with a computational approach, to explore the conformational preferences of two glycolipid models (3-0-acyl catechol and guaiacol α-D-glucopyranosides), either fully isolated in the gas phase or controlled interaction with a single water molecule.
View Article and Find Full Text PDFNoncovalent interactions involving sulfur centers play a relevant role in biological and chemical environments. Yet, detailed molecular descriptions are scarce and limited to very simple model systems. Here we explore the formation of the elusive S-H···S hydrogen bond and the competition between S-H···O and O-H···S interactions in pure and mixed dimers of the conformationally flexible molecules 2-phenylethanethiol (PET) and 2-phenylethanol (PEAL), using the isolated and size-controlled environment of a jet expansion.
View Article and Find Full Text PDFHydrogen bonding (HB) is associated with frequency shifts, spectral broadening and intensity variation of the vibrational bands of the donor stretching modes. This is true in all systems, from the most basic molecular models, to more complex ones, and biological molecules. In the gas phase, the latter can be either fully isolated, with only intramolecular HB, or micro-solvated.
View Article and Find Full Text PDFHydrogen bonds and stacking interactions are pivotal in biological mechanisms, although their proper characterisation within a molecular complex remains a difficult task. We used quantum mechanical calculations to characterise the complex between caffeine and phenyl-β-D-glucopyranoside, in which several functional groups of the sugar derivative compete with each other to attract caffeine. Calculations at different levels of theory (M06-2X/6-311++G(d,p) and B3LYP-ED=GD3BJ/def2TZVP) agree to predict several structures similar in stability (relative energy) but with different affinity (binding energy).
View Article and Find Full Text PDFSugars, together with amino acids and nucleobases, are the fundamental building blocks of a cell. They are involved in many fundamental processes and they especially play relevant roles as part of the immune system. The latter is connected to their ability to establish a collection of intermolecular interactions, depending on the position of their hydroxyl groups.
View Article and Find Full Text PDFThe selection of cytosine, guanine, thymine, and adenine as components of the information biopolymers was a complex process influenced by several factors. Among them, the intermolecular interactions may have played a determinant role. Thus, a deep understanding of the intermolecular interactions between nucleobases and other prebiotic molecules may help understand the first instants of chemical evolution.
View Article and Find Full Text PDFGas-phase spectroscopic studies of alcohol clusters offer accurate information on the influence of non-covalent interactions on molecular recognition, and are of paramount importance to model supramolecular and biological chemical processes. Here, we examine the role of the aliphatic side chain in the self-aggregation of aromatic alcohols, using a multi-methodological gas-phase approach which combines microwave spectroscopy and mass-resolved electronic and vibrational laser spectroscopy. Spectroscopic and electronic structure computations were carried out for the dimer, trimer and tetramer of 2-phenylethanol, extending previous investigations on smaller aromatic alcohols.
View Article and Find Full Text PDFHerein, we have investigated the structure of phenyl formate⋅⋅⋅water (PhOF⋅⋅⋅H O) dimer and various non-covalent interactions present there using gas-phase laser spectroscopy and microwave spectroscopy combined with quantum chemistry calculations. Two conformers of PhOF⋅⋅⋅H O (C1 and T1), built on the two cis/trans conformers of the bare molecule, have been observed in the experiment. In cis-PhOF, there is an n → interaction between the lone-pair orbital of the carbonyl oxygen atom and the π* orbital of the phenyl ring, which persists in the monohydrated C1 conformer of PhOF⋅⋅⋅H O according to the NBO and NCI analyses.
View Article and Find Full Text PDFOne of the most fascinating questions in chemistry is why nature chose CGAT as the alphabet of life. Very likely, such selection was the result of multiple factors and a long period of refinement. Here, we explore how the intermolecular interactions influenced such process, by characterizing the formation of dimers between adenine, theobromine and 4-aminopyrimidine.
View Article and Find Full Text PDFMolecular aggregation is of paramount importance in many chemical processes, including those in living beings. Thus, characterization of the intermolecular interactions is an important step in its understanding. We describe here the aggregation of benzyl alcohol at the molecular level, a process governed by a delicate equilibrium between OH⋯O and OH⋯π hydrogen bonds and dispersive interactions.
View Article and Find Full Text PDFUnderstanding the molecular basis of the appearance of life on Earth is an exciting research field. Many factors may have influenced the election of the molecules used by living beings and evolution may have modified those original compounds. In an attempt to understand the role played by intermolecular interactions in the election of CGAT as the alphabet of life, we present here a thorough experimental and computational study on the interaction of theobromine with water.
View Article and Find Full Text PDFWe explore the influence of the relative position of the methyl substituent on the photophysics of theophylline and theobromine, two molecules that are structurally related to the DNA bases. Using a combination of spectroscopic techniques and quantum mechanical calculations, we show that moving the methyl group from N1 in theophylline to N7 in theobromine causes significant differences in their excited state properties, i.e.
View Article and Find Full Text PDFIntermolecular interactions are difficult to model, especially in systems formed by multiple interactions. Such is the case of caffeine-phenol. Structural data has been extracted by using mass-resolved excitation spectroscopy and double resonance techniques.
View Article and Find Full Text PDFWe explored the molecular basis of tyrosine as the docking amino acid for the first glucose molecule during the synthesis of glycogen. The IR spectra show that the aromatic ring acts as bait to keep the position where the next glucose unit has to bind clear, by luring non-desirable molecules towards the aromatic ring. Only, α-/β-glucose shows particular affinity for the O3H and O4H moieties.
View Article and Find Full Text PDFSugars are small carbohydrates which play numerous roles in living organisms such as storage of energy or as structural components. Modifications of specific sites within the glycan chain can modulate a carbohydrate's overall biological function as it happens with nucleic acids and proteins. Hence, identifying discrete carbohydrate modifications and understanding their biological effects is essential.
View Article and Find Full Text PDF