Publications by authors named "Andani Mulelu"

Unlabelled: Tuberculosis, a lung disease caused by (), remains a major global health problem ranking as the second leading cause of death from a single infectious agent. One of the major factors contributing toward success as a pathogen is its unique cell wall and its ability to counteract various arms of the host's immune response. A recent genome-scale study profiled a list of candidate genes that are predicted to be essential for survival of host-mediated responses.

View Article and Find Full Text PDF

Nitrilases are helical enzymes that convert nitriles to acids and/or amides. All plants have a nitrilase 4 homolog specific for ß-cyanoalanine, while in some plants neofunctionalization has produced nitrilases with altered specificity. Plant nitrilase substrate size and specificity correlate with helical twist, but molecular details of this relationship are lacking.

View Article and Find Full Text PDF

Nitrilases are of significant interest both due to their potential for industrial production of valuable products as well as degradation of hazardous nitrile-containing wastes. All known functional members of the nitrilase superfamily have an underlying dimer structure. The true nitrilases expand upon this basic dimer and form large spiral or helical homo-oligomers.

View Article and Find Full Text PDF

The cyanide dihydratases from Bacillus pumilus and Pseudomonas stutzeri share high amino acid sequence similarity throughout except for their highly divergent C-termini. However, deletion or exchange of the C-termini had different effects upon each enzyme. Here we extended previous studies and investigated how the C-terminus affects the activity and stability of three nitrilases, the cyanide dihydratases from B.

View Article and Find Full Text PDF

Cyanide dihydratase is an enzyme in the nitrilase family capable of transforming cyanide to formate and ammonia. This reaction has been exploited for the bioremediation of cyanide in wastewater streams, but extending the pH operating range of the enzyme would improve its utility. In this work, we describe mutants of Bacillus pumilus C1 cyanide dihydratase (CynD(pum)) with improved activity at higher pH.

View Article and Find Full Text PDF