Publications by authors named "Andan Zhu"

Background: Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive.

Results: We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns.

View Article and Find Full Text PDF

Strawberry is an emerging model for studying polyploid genome evolution and rapid domestication of fruit crops. Here we report haplotype-resolved genomes of two wild octoploids (Fragaria chiloensis and Fragaria virginiana), the progenitor species of cultivated strawberry. Substantial variation is identified between species and between haplotypes.

View Article and Find Full Text PDF

Plant mitochondrial genomes (mitogenomes) exhibit fluid genome architectures, which could lead to the rapid erosion of genome synteny over a short evolutionary time scale. Among the species-rich orchid family, the leafy and leafless are sister species with remarkable differences in morphology and nutritional physiology. Although our understanding of the evolution of mitochondria is incomplete, these sister taxa are ideal for examining this subject.

View Article and Find Full Text PDF

The gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry () species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in remains elusive. By integrating the published and assembled genomes and the newly generated RNA-seq data, members of the gene family were systematically identified in six species, including three self-incompatible species (, , and ) and three self-compatible species (, , and ).

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the CAM (crassulacean acid metabolism) photosynthesis in epiphytic plants, particularly exploring the genome of Cymbidium mannii, a type of orchid that utilizes this photosynthetic strategy for adaptation in diverse environments.
  • - A detailed genome analysis revealed a 2.88-Gb size with 27,192 genes, highlighting the significant role of repetitive elements and retrotransposon expansions in the plant's genomic evolution.
  • - Utilizing advanced techniques like transcriptomics and proteomics, the research discovered oscillating metabolite patterns linked to circadian rhythms, which play a key role in the regulation of CAM photosynthesis, showcasing insights into how plants optimize carbon fixation.
View Article and Find Full Text PDF

Although interactions between the cytoplasmic and nuclear genomes occurred during diversification of many plants, the evolutionary conflicts due to cytonuclear interactions are poorly understood in crop breeding. Here, we constructed a pan-mitogenome and identified chimeric open reading frames (ORFs) generated by extensive structural variations (SVs). Meanwhile, short reads from 184 accessions of citrus species were combined to construct three variation maps for the nuclear, mitochondrial, and chloroplast genomes.

View Article and Find Full Text PDF

Lilies are one of the most important ornamental flowers worldwide with approximately 100 wild species and numerous cultivars, but the phylogenetic relationships among wild species and their contributions to these cultivars are poorly resolved. We collected the major species and cultivars and assembled their plastome sequences. Our phylogenetic reconstruction using 114 plastid genomes, including 70 wild species representing all sections and 42 cultivars representing six hybrid divisions and two outgroups, uncovered well-supported genetic relationships within .

View Article and Find Full Text PDF

Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in , a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives.

View Article and Find Full Text PDF

Plant mitochondrial DNA has been described as evolving rapidly in structure but slowly in sequence. However, many of the noncoding portions of plant mitogenomes are not homologous among species, raising questions about the rate and spectrum of mutations in noncoding regions. Recent studies have suggested that the lack of homology in noncoding regions could be due to increased sequence divergence.

View Article and Find Full Text PDF

Posttranscriptional modifications, including intron splicing and RNA editing, are common processes during regulation of gene expression in plant organelle genomes. However, the intermediate products of intron-splicing, and the interplay between intron-splicing and RNA-editing were not well studied. Most organelle transcriptome analyses were based on the Illumina short reads which were unable to capture the full spectrum of transcript intermediates within an organelle.

View Article and Find Full Text PDF

Background: The Rhododendron sanguineum complex is endemic to alpine mountains of northwest Yunnan and southeast Tibet of China. Varieties in this complex exhibit distinct flower colors even at the bud stage. However, the underlying molecular regulations for the flower color variation have not been well characterized.

View Article and Find Full Text PDF

Heterosis or hybrid vigor is widespread in plants and animals. Although the molecular basis for heterosis has been extensively studied, metabolic and proteomic contributions to heterosis remain elusive. Here we report an integrative analysis of time-series metabolome and proteome data in maize () hybrids and their inbred parents.

View Article and Find Full Text PDF

Synonymous substitution rates in plant mitochondrial genomes vary by orders of magnitude among species, whereas synonymous rates among genes within a genome are generally consistent. Exceptionally, genes within the Ajuga reptans (Lamiaceae) mitochondrial genome exhibit unprecedented intragenomic heterogeneity in synonymous sequence divergence, but the biological mechanisms underlying this rate variation remain unclear. We tracked the origin and evolutionary trajectory of mitochondrial rate variations by dense sampling in Ajugoideae and found differences in the timing and magnitude of rate acceleration for particular genes.

View Article and Find Full Text PDF

Self-incompatibility (SI) is an important mechanism that prevents self-fertilization and inbreeding in flowering plants. The most widespread SI system utilizes S ribonucleases (S-RNases) and S-locus F-boxes (SLFs) as S determinants. In citrus, SI is ancestral, and Citrus maxima (pummelo) is self-incompatible, while Citrus reticulata (mandarin) and its hybrids are self-compatible (SC).

View Article and Find Full Text PDF

Hundreds of plant mitogenomes have been sequenced from angiosperms, but relatively few mitogenomes are available from its sister lineage, gymnosperms. To examine mitogenomic diversity among extant gymnosperms, we generated draft mitogenomes from 11 diverse species and compared them with four previously published mitogenomes. Examined mitogenomes from Pinaceae and cycads retained all 41 protein genes and 26 introns present in the common ancestor of seed plants, whereas gnetophyte and cupressophyte mitogenomes experienced extensive gene and intron loss.

View Article and Find Full Text PDF

Comparative genomics among gymnosperms suggested extensive loss of mitochondrial RNA editing sites from Welwitschia mirabilis based on predictive analysis. However, empirical or transcriptome data to confirm this massive loss event are lacking, and the potential mechanisms of RNA site loss are unclear. By comparing genomic sequences with transcriptomic and reverse-transcription PCR sequencing data, we performed a comprehensive analysis of the pattern of RNA editing in the mitochondrial and plastid genomes (mitogenome and plastome, respectively) of W.

View Article and Find Full Text PDF

In some plants, exposure to stress can induce a memory response, which appears to play an important role in adaptation to recurrent stress environments. However, whether rice exhibits drought stress memory and the molecular mechanisms that might underlie this process have remained unclear. Here, we ensured that rice drought memory was established after cycles of mild drought and re-watering treatment, and studied gene expression by whole-transcriptome strand-specific RNA sequencing (ssRNA-seq).

View Article and Find Full Text PDF

Alpine plants remain the least studied plant communities in terrestrial ecosystems. However, how they adapt to high-altitude environments is far from clear. Here, we used RNA-seq to investigate a typical alpine plant maca (Lepidium meyenii) to understand its high-altitude adaptation at transcriptional and post-transcriptional level.

View Article and Find Full Text PDF

Herein, the dosage effect of limonene on the P. digitatum spore germination and its regulatory mechanisms were investigated. Results showed that limonene only at low concentrations displayed a stimulatory role, with the optimal concentration being 0.

View Article and Find Full Text PDF

Background: Phylogenetic relationships among Eastern Hemisphere cypresses, Western Hemisphere cypresses, junipers, and their closest relatives are controversial, and generic delimitations have been in flux for the past decade. To address relationships and attempt to produce a more robust classification, we sequenced 11 new plastid genomes (plastomes) from the five variously described genera in this complex (Callitropsis, Cupressus, Hesperocyparis, Juniperus, and Xanthocyparis) and compared them with additional plastomes from diverse members of Cupressaceae.

Results: Phylogenetic analysis of protein-coding genes recovered a topology in which Juniperus is sister to Cupressus, whereas a tree based on whole plastomes indicated that the Callitropsis-Hesperocyparis-Xanthocyparis (CaHX) clade is sister to Cupressus.

View Article and Find Full Text PDF

In parasitic plants, the reduction in plastid genome (plastome) size and content is driven predominantly by the loss of photosynthetic genes. The first completed mitochondrial genomes (mitogenomes) from parasitic mistletoes also exhibit significant degradation, but the generality of this observation for other parasitic plants is unclear. We sequenced the complete mitogenome and plastome of the hemiparasite Castilleja paramensis (Orobanchaceae) and compared them with additional holoparasitic, hemiparasitic and nonparasitic species from Orobanchaceae.

View Article and Find Full Text PDF

The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron.

View Article and Find Full Text PDF

Currently, complete mitochondrial genomes (mitogenomes) are available from all major land plant lineages except ferns. Sequencing of fern mitogenomes could shed light on the major evolutionary transitions that established mitogenomic diversity among extant lineages. In this study, we generated complete mitogenomes from the adder's tongue fern (Ophioglossum californicum) and the whisk fern (Psilotum nudum).

View Article and Find Full Text PDF

Rates of nucleotide substitution were previously shown to be several times slower in the plastid inverted repeat (IR) compared with single-copy (SC) regions, suggesting that the IR provides enhanced copy-correction activity. To examine the generality of this synonymous rate dependence on the IR, we compared plastomes from 69 pairs of closely related species representing 52 families of angiosperms, gymnosperms, and ferns. We explored the breadth of IR boundary shifts in land plants and demonstrate that synonymous substitution rates are, on average, 3.

View Article and Find Full Text PDF

The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage.

View Article and Find Full Text PDF