The use of biobased materials in additive manufacturing is a promising long-term strategy for advancing the polymer industry toward a circular economy and reducing the environmental impact. In commercial 3D printing formulations, there is still a scarcity of efficient biobased polymer resins. This research proposes vegetable oils as biobased components to formulate the stereolithography (SLA) resin.
View Article and Find Full Text PDFIn response to rising concerns over the environmental and human health ramifications of polymers derived from petroleum, particularly in the food packaging industry, research has pivoted towards more sustainable materials. Poly(butylene succinate) (PBS), selected as the polymer matrix, stands out as one of the most promising bio-based and biodegradable polymers suitable for film blowing and lamination. A layered spray-coating technique was employed to apply 1, 5, 10, and 20 layers of nanofibrillated cellulose (NFC) between blown PBS films, creating a three-layer laminate structure.
View Article and Find Full Text PDFTurning waste products into useable resources is a necessity for the sustainable future of our planet. Such is the case with popular beverage coffee that produces solid waste in the form of spent coffee grounds (SCG). There is an opportunity to use SCG material as a cheap, sustainable, and biodegradable polymer filler that is received as waste from espresso machines.
View Article and Find Full Text PDFLiquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4'-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified.
View Article and Find Full Text PDFThere is an opportunity to use nanocellulose as an efficient renewable reinforcing filler for polymer composites. There have been many investigations to prove the reinforcement concept of different nanocellulose sources for thermoplastic and thermoset polymers. The present comparative study highlighted the beneficial effects of selecting cellulose nanofibers (CNFs) and nanocrystals (CNCs) on the exploitation properties of vegetable oil-based thermoset composite materials-thermal, thermomechanical, and structural characteristics.
View Article and Find Full Text PDFTypical resins for UV-assisted additive manufacturing (AM) are prepared from petroleum-based materials and therefore do not contribute to the growing AM industry trend of converting to sustainable bio-based materials. To satisfy society and industry's demand for sustainability, renewable feedstocks must be explored; unfortunately, there are not many options that are applicable to photopolymerization. Nevertheless, some vegetable oils can be modified to be suitable for UV-assisted AM technologies.
View Article and Find Full Text PDFBiodegradable polymer composites from renewable resources are the next-generation of wood-like materials and are crucial for the development of various industries to meet sustainability goals. Functional applications like packaging, medicine, automotive, construction and sustainable housing are just some that would greatly benefit. Some of the existing industries, like wood plastic composites, already encompass given examples but are dominated by fossil-based polymers that are unsustainable.
View Article and Find Full Text PDFWe report the manufacturing and characterization of poly (butylene succinate) (PBS) and micro cellulose (MCC) woody-like composites. These composites can be applied as a sustainable woody-like composite alternative to conventional fossil polymer-based wood-plastic composites (WPC). The PBS/MCC composites were prepared by using a melt blending of 70 wt% of MCC processed from bleached softwood.
View Article and Find Full Text PDF