Publications by authors named "Anchel Gonzalez-Barriga"

Aims: Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1.

Methods: By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells.

View Article and Find Full Text PDF

Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells.

View Article and Find Full Text PDF

Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3' polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved.

View Article and Find Full Text PDF
Article Synopsis
  • - Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a mutation leading to toxic RNA that disrupts gene processing in various tissues, especially affecting glial cells in the central nervous system (CNS).
  • - Research using transcriptomics on DM1 model mice showed significant expression and splicing changes primarily in glial cells, with oligodendrocytes exhibiting the most alterations, indicating issues in cell differentiation.
  • - Gene ontology analyses confirmed that these changes in glial cells are linked to critical differentiation processes, and further studies combined with protein analysis aimed to understand the functional impacts of altered splicing due to the toxic RNA.
View Article and Find Full Text PDF

Spinocerebellar ataxia type 3 (SCA3) and type 1 (SCA1) are dominantly inherited neurodegenerative disorders that are currently incurable. Both diseases are caused by a CAG-repeat expansion in exon 10 of the Ataxin-3 and exon 8 of the Ataxin-1 gene, respectively, encoding an elongated polyglutamine tract that confers toxic properties to the resulting proteins. We have previously shown lowering of the pathogenic polyglutamine protein in Huntington's disease mouse models using (CUG)7, a CAG repeat-targeting antisense oligonucleotide.

View Article and Find Full Text PDF

Clinical efficacy of antisense oligonucleotides (AONs) for the treatment of neuromuscular disorders depends on efficient cellular uptake and proper intracellular routing to the target. Selection of AONs with highest in vitro efficiencies is usually based on chemical or physical methods for forced cellular delivery. Since these methods largely bypass existing natural mechanisms for membrane passage and intracellular trafficking, spontaneous uptake and distribution of AONs in cells are still poorly understood.

View Article and Find Full Text PDF

The aim of these studies was to demonstrate the therapeutic capacity of an antisense oligonucleotide with the sequence (CUG)7 targeting the expanded CAG repeat in huntingtin (HTT) mRNA in vivo in the R6/2 N-terminal fragment and Q175 knock-in Huntington's disease (HD) mouse models. In a first study, R6/2 mice received six weekly intracerebroventricular infusions with a low and high dose of (CUG)7 and were sacrificed 2 weeks later. A 15-60% reduction of both soluble and aggregated mutant HTT protein was observed in striatum, hippocampus and cortex of (CUG)7-treated mice.

View Article and Find Full Text PDF

Muscular manifestation of myotonic dystrophy type 1 (DM1), a common inheritable degenerative multisystem disorder, is mainly caused by expression of RNA from a (CTG·CAG)n-expanded DM1 locus. Here, we report on comparative profiling of expression of normal and expanded endogenous or transgenic transcripts in skeletal muscle cells and biopsies from DM1 mouse models and patients in order to help us in understanding the role of this RNA-mediated toxicity. In tissue of HSA(LR) mice, the most intensely used 'muscle-only' model in the DM1 field, RNA from the α-actin (CTG)250 transgene was at least 1000-fold more abundant than that from the Dmpk gene, or the DMPK gene in humans.

View Article and Find Full Text PDF

Myotonic Dystrophy type 1 (DM1) is a multisystemic disease caused by toxic RNA from a DMPK gene carrying an expanded (CTG•CAG)n repeat. Promising strategies for treatment of DM1 patients are currently being tested. These include antisense oligonucleotides and drugs for elimination of expanded RNA or prevention of aberrant binding to RNP proteins.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by DM protein kinase (DMPK) transcripts containing an expanded (CUG)n repeat. Antisense oligonucleotide (AON)-mediated suppression of these mutant RNAs is considered a promising therapeutic strategy for this severe disorder. Earlier, we identified a 2'-O-methyl (2'-OMe) phosphorothioate (PT)-modified (CAG)7 oligo (PS58), which selectively silences mutant DMPK transcripts through recognition of the abnormally long (CUG)n tract.

View Article and Find Full Text PDF