Publications by authors named "Anchal Chandra"

The emergence of new escape mutants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has escalated its penetration among the human population and has reinstated its status as a global pandemic. Therefore, developing effective antiviral therapy against emerging SARS-CoV variants and other viruses in a short period becomes essential. Blocking SARS-CoV-2 entry into human host cells by disrupting the spike glycoprotein-angiotensin-converting enzyme 2 interaction has already been exploited for vaccine development and monoclonal antibody therapy.

View Article and Find Full Text PDF

Many viruses utilize the host endo-lysosomal network for infection. Tracing the endocytic itinerary of SARS-CoV-2 can provide insights into viral trafficking and aid in designing new therapeutic strategies. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV-2 spike protein is internalized via the pH-dependent CLIC/GEEC (CG) endocytic pathway in human gastric-adenocarcinoma (AGS) cells expressing undetectable levels of ACE2.

View Article and Find Full Text PDF

Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions.

View Article and Find Full Text PDF

The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEδ, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm.

View Article and Find Full Text PDF
Article Synopsis
  • PDEδ plays a crucial role in regulating Ras family G proteins by maintaining their proper distribution in cellular membranes.
  • It binds to and solubilizes farnesylated Ras proteins, promoting their movement within the cytoplasm and ensuring they are effectively localized at key cellular sites like the Golgi and plasma membrane.
  • Disruption of PDEδ function leads to a more random distribution of Ras proteins, which negatively impacts both normal and oncogenic Ras signaling, potentially influencing cancer progression.
View Article and Find Full Text PDF

Lipidated Rho and Rab GTP-binding proteins are transported between membranes in complex with solubilizing factors called 'guanine nucleotide dissociation inhibitors' (GDIs). Unloading from GDIs using GDI displacement factors (GDFs) has been proposed but remains mechanistically elusive. PDEδ is a putative solubilizing factor for several prenylated Ras-subfamily proteins.

View Article and Find Full Text PDF

Reversible S-palmitoylation of cysteine residues critically controls transient membrane tethering of peripheral membrane proteins. Little is known about how the palmitoylation machinery governs their defined localization and function. We monitored the spatially resolved reaction dynamics and substrate specificity of the core mammalian palmitoylation machinery using semisynthetic substrates.

View Article and Find Full Text PDF