Biosens Bioelectron
February 2024
Rapid detection and viability assessment of pathogenic microorganisms, without the need for pre-enrichment steps, is critical in clinical microbiology, food safety, environmental quality assessment, and biosecurity. We demonstrate a powerful analytical concept and the related platform that enable in situ rapid detection, separation, sensitive quantification, and viability assessment of targeted microorganisms (bacteria and fungi) from minimally processed samples. This is based on a novel integration of magneto-affine selection and electrical impedance assay.
View Article and Find Full Text PDFSilica nanoparticles (SiO) are increasingly investigated for biomedical applications. This study aimed to analyze the potential use of a SiO nanoparticles coated with biocompatible polydopamine (SiO@PDA) as a potential chemotherapeutic drug carrier. SiO morphology and PDA adhesion was analyzed by dynamic light scattering, electron microscopy and nuclear magnetic resonance.
View Article and Find Full Text PDFThe interest in polymers with high thermal conductivity increased much because of their inherent properties such as low density, low cost, flexibility, and good chemical resistance. However, it is challenging to engineer plastics with good heat transfer characteristics, processability, and required strength. Improving the degree of the chain alignment and forming a continuous thermal conduction network is expected to enhance thermal conductivity.
View Article and Find Full Text PDFPolydopamine (PDA) formed by oxidative polymerization of dopamine has attracted wide interest because of its unique properties, in particular its strong adhesion to almost all types of surfaces. 3,4-Dihydroxybenzylamine (DHBA) as the lower homolog of PDA also contains a catechol unit and an amino group and thus can be expected to exhibit a similar adhesion and reaction behavior. In fact, autoxidation of DHBA with air in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer gives rise to deeply colored oligomer/polymer products (poly(3,4-dihydroxybenzylamine) (PDHBA)) that strongly adhere to several surfaces.
View Article and Find Full Text PDFMagnetic structures exhibiting large magnetic moments are sought after in theranostic approaches that combine magnetic hyperthermia treatment (MH) and diagnostic magnetic resonance imaging in oncology, since they offer an enhanced magnetic response to an external magnetic field. We report on the synthesized production of a core-shell magnetic structure using two types of magnetite nanoclusters (MNC) based on a magnetite core and polymer shell. This was achieved through an in situ solvothermal process, using, for the first time, 3,4-dihydroxybenzhydrazide (DHBH) and poly[3,4-dihydroxybenzhydrazide] (PDHBH) as stabilizers.
View Article and Find Full Text PDFThe equilibrium geometries of the ground and first electronic excited states as well as the radiation-less deactivation channels of catechol in its monomer and dimer configurations were investigated using the standard linear-response and the spin-flipped TDDFT, multireference CASSCF as well as the similarity transformed equation-of-motion coupled cluster built with the domain-based local pair natural orbitals (DLPNO-STEOM-CCSD) methods. For the monomer, it was found that there is a new conical intersection geometry that can explain why catechol exhibits different photochemical behavior. This deactivation pathway involves almost simultaneously, an excited state intramolecular proton transfer between the two O atoms and an O-H bond breaks at the proton that is not between the two O atoms.
View Article and Find Full Text PDFTo understand the photochemical behaviour of the polydopamine polymer in detail, one would also need to know the behaviour of its building blocks. The electronic absorption, as well as the fluorescence emission and excitation spectra of the dopamine were experimentally and theoretically investigated considering time-resolved fluorescence spectroscopy and first-principles quantum theory methods. The shape of the experimental absorption spectra obtained for different dopamine species with standard, zwitterionic, protonated, and deprotonated geometries was interpreted by considering the advanced equation-of-motion coupled-cluster theory of DLPNO-STEOM.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2016
Tubular structures built from amphiphilic molecules are of interest for nano-sensing, drug delivery, and structuring of oils. In this study, we characterized the tubules built in aqueous suspensions of a cholesteryl nucleoside conjugate, cholesterylaminouridine (CholAU) and phosphatidylcholines (PCs). In mixtures with unsaturated PCs having chain lengths comparable to the length of CholAU, two different types of tubular structures were observed; nano- and micro-tubules had average diameters in the ranges 50-300 nm and 2-3 μm, respectively.
View Article and Find Full Text PDFFor specific applications in the field of high gradient magnetic separation of biomaterials, magnetic nanoparticle clusters of controlled size and high magnetic moment in an external magnetic field are of particular interest. We report the synthesis and characterization of magnetic microgels designed for magnetic separation purposes, as well as the separation efficiency of the obtained microgel particles. High magnetization magnetic microgels with superparamagnetic behaviour were obtained in a two-step synthesis procedure by a miniemulsion technique using highly stable ferrofluid on a volatile nonpolar carrier.
View Article and Find Full Text PDF