This work reports the design and synthesis of novel oxadiazole-decorated azobenzenes, structural analysis of the resulting compounds and behavior under light irradiation. The synthetic strategy involved constructing amino functionalized heterocyclic key intermediates which were used either to yield electrophilic diazonium salts able to react with phenol moieties or as nucleophilic partners in Bayer-Mills reaction with nitroso-substituted derivatives. The amino-derived oxadiazole intermediates were investigated by absorption and emission spectroscopy providing blue and green emitted light.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2023
Electronic and stability properties of quasi-2D alkylammonium perovskites are investigated using density functional theory (DFT) calculations and validated experimentally on selected classes of compounds. Our analysis is focused on perovskite structures of formula (A)(A')PbX, with large cations A = butyl-, pentyl-, hexylammonium (BA, PA, HXA), small cations A' = methylammonium, formamidinium, ethylammonium, guanidinium (MA, FA, EA, GA) and halogens X = I, Br, Cl. The role of the halogen ions is outlined for the band structure, stability and defect formation energies.
View Article and Find Full Text PDFTiO-based mixed oxide-carbon composite supports have been suggested to provide enhanced stability for platinum (Pt) electrocatalysts in polymer electrolyte membrane (PEM) fuel cells. The addition of molybdenum (Mo) to the mixed oxide is known to increase the CO tolerance of the electrocatalyst. In this work Pt catalysts, supported on TiMoO-C composites with a 25/75 oxide/carbon mass ratio and prepared from different carbon materials (C: Vulcan XC-72, unmodified and functionalized Black Pearls 2000), were compared in the hydrogen oxidation reaction (HOR) and in the oxygen reduction reaction (ORR) with a commercial Pt/C reference catalyst in order to assess the influence of the support on the electrocatalytic behavior.
View Article and Find Full Text PDF