Wastewater treatment targeting reuse may limit water scarcity. Photocatalysis is an advanced oxidation process that may be employed in the removal of traces of organic pollutants, where the material choice is important. Titanium dioxide (TiO) is a highly efficient photocatalyst with good aqueous stability.
View Article and Find Full Text PDFMaterials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO as a well-known photocatalyst, CuS as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pH) and BET porosity were used to characterize the substrates.
View Article and Find Full Text PDFA novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology.
View Article and Find Full Text PDFJ Environ Manage
March 2015
This paper reports on the synthesis, characterization and adsorption properties of a novel nano-composite obtained using the hydrothermal method applied to a fly ash-TiO2 slurry and hexadecyltrimethyl-ammonium bromide, as surface controlling agent. The new adsorbent was investigated in terms of crystallinity (XRD), surface properties (AFM, SEM, and porosity and BET surface) and surface chemistry (EDX, FTIR). The nanocomposite's properties were sequentially tested in adsorption and photocatalysis processes applied to multi-pollutant synthetic wastewaters loaded with copper cations and two industrial dyes: the acid dye Bemacid Blau and the reactive dye Bemacid Rot; the nano-composite substrate allowed reaching high removal efficiencies, above 90%, both in adsorption and in photodegradation experiments, in optimised conditions.
View Article and Find Full Text PDFJ Hazard Mater
January 2013
Wastewaters resulting from the textile and dye finishing industries need complex treatment for efficient removal of colour and other compounds existent in the dyeing and rising baths (heavy metals, surfactants, equalizers, etc.). Modified fly ash (FA) mixed with TiO(2) photocatalyst represent a viable option for simultaneous removal of dyes and heavy metals, and the optimized conditions are discussed in this paper for synthetic wastewaters containing methyl-orange (MO) and cadmium.
View Article and Find Full Text PDFWastewaters resulting from textile industry sector have a different chemistry compared with most of the other wastewaters. The different dyes in excess are usually very stable and even small quantities can have a major impact to the effluent. In order to treat these wastewaters, photodegradation is a largely investigated process that can be up-scaled.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2010
Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2009
The paper presents the optimization process for obtaining NiO thin layers on copper substrate for solar absorber coatings, using an inexpensive and up-scalable technique: spray pyrolysis deposition (SPD). Efficient selective coatings must present a high absorption coefficient of the incident solar irradiation, and low emission of heat. The solar selective coatings design involves tailoring the surface properties for superior optical properties.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
February 2008
The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye. The photocatalytic activity of the TiO2 was studied using a reactor equipped with UV-A sources, with maximum emission at 365 nm. The photocatalytic activity of the TiO2 powder (99.
View Article and Find Full Text PDF