Earlier detection of cancers can dramatically improve the efficacy of available treatment strategies. However, despite decades of effort on blood-based biomarker cancer detection, many promising endogenous biomarkers have failed clinically because of intractable problems such as highly variable background expression from nonmalignant tissues and tumor heterogeneity. In this work we present a tumor-detection strategy based on systemic administration of tumor-activatable minicircles that use the pan-tumor-specific Survivin promoter to drive expression of a secretable reporter that is detectable in the blood nearly exclusively in tumor-bearing subjects.
View Article and Find Full Text PDFReporter gene (RG) imaging of cell-based therapies provides a direct readout of therapeutic efficacy by assessing the fate of implanted cells. To permit long-term cellular imaging, RGs are traditionally required to be integrated into the cellular genome. This poses a potential safety risk and regulatory bottleneck for clinical translation as integration can lead to cellular transformation.
View Article and Find Full Text PDFPhotoacoustic (PA) imaging is continuing to be applied for physiological imaging and more recently for molecular imaging of living subjects. Owing to its high spatial resolution in deep tissues, PA imaging holds great potential for biomedical applications and molecular diagnostics. There is however a lack of probes for targeted PA imaging, especially in the area of enzyme-activatable probes.
View Article and Find Full Text PDFPurpose: To evaluate the potential of targeted photoacoustic imaging as a noninvasive method for detection of follicular thyroid carcinoma.
Experimental Design: We determined the presence and activity of two members of matrix metalloproteinase family (MMP), MMP-2 and MMP-9, suggested as biomarkers for malignant thyroid lesions, in FTC133 thyroid tumors subcutaneously implanted in nude mice. The imaging agent used to visualize tumors was MMP-activatable photoacoustic probe, Alexa750-CXeeeeXPLGLAGrrrrrXK-BHQ3.
The emerging field of photoacoustic tomography is rapidly evolving with many new system designs and reconstruction algorithms being published. Many systems use water as a coupling medium between the scanned object and the ultrasound transducers. Prior to a scan, the water is heated to body temperature to enable small animal imaging.
View Article and Find Full Text PDFA selenium analogue of amino-D-luciferin, aminoseleno-D-luciferin, is synthesized and shown to be a competent substrate for the firefly luciferase enzyme. It has a red-shifted bioluminescence emission maximum at 600 nm and is suitable for bioluminescence imaging studies in living subjects.
View Article and Find Full Text PDFWe report here an immobilization strategy using a collagen binding protein to deliver and confine synthetic reporters to the extracellular microenvironment in vivo for noninvasively imaging the activity of targets in the microenvironment. We show that the immobilization of reporters on collagens in the local microenvironment is highly efficient and physiologically stable for repetitive, long-term imaging. By using this strategy we successfully developed an immobilized bioluminescent activatable reporter and a dual-modality reporter to map and quantitatively image the activity of extracellular matrix metalloproteinases (MMP) in tumor-bearing mice.
View Article and Find Full Text PDFIdentifying protein-protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals.
View Article and Find Full Text PDFWe report here a new small molecule fluorogen and RNA aptamer pair for RNA labeling. The small-molecule fluorogen is designed on the basis of fluorescently quenched sulforhodamine dye. The SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure and fluorescence screening in E.
View Article and Find Full Text PDFFurin, a proprotein convertases family endoprotease, processes numerous physiological substrates and is overexpressed in cancer and inflammatory conditions. Noninvasive imaging of furin activity will offer a valuable tool to probe furin function over the course of tumor growth and migration in the same animals in real time and directly assess the inhibition efficacy of drugs in vivo. Here, we report successful bioluminescence imaging of furin activity in xenografted MBA-MB-468 breast cancer tumors in mice with bioluminogenic probes.
View Article and Find Full Text PDFIn vivo fluorescence imaging uses a sensitive camera to detect fluorescence emission from fluorophores in whole-body living small animals. To overcome the photon attenuation in living tissue, fluorophores with long emission at the near-infrared (NIR) region are generally preferred, including widely used small indocarbocyanine dyes. The list of NIR probes continues to grow with the recent addition of fluorescent organic, inorganic and biological nanoparticles.
View Article and Find Full Text PDFEstablishing a general and effective method for regulating gene expression in mammalian systems is important for many aspects of biological and biomedical research. Herein we report the antisense activities of a cell-permeable, guanidine-based peptide nucleic acid (PNA) called GPNA. We show that a GPNA oligomer designed to bind to the transcriptional start-site of human E-cadherin gene induces potent and sequence-specific antisense effects and is less toxic to the cells than the corresponding PNA-polyarginine conjugate.
View Article and Find Full Text PDFPeptide nucleic acid (PNA) is a synthetic analogue of DNA and RNA, developed more than a decade ago in which the naturally occurring sugar phosphate backbone has been replaced by the N-(2-aminoethyl) glycine units. Unlike DNA or RNA in the unhybridized state (single strand) which can adopt a helical structure through base-stacking, although highly flexible, PNA does not have a well-defined conformational folding in solution. Herein, we show that a simple backbone modification at the gamma-position of the N-(2-aminoethyl) glycine unit can transform a randomly folded PNA into a helical structure.
View Article and Find Full Text PDFGuanidine-based peptide nucleic acid (GPNA) monomers and oligomers containing all four natural (adenine (A), cytosine (C), guanine (G), and thymine (T)) and two unnatural (2-thiouracil (sU) and 2,6-diaminopurine (D)) nucleobases have been synthesized. Thermal denaturation study showed that GPNA oligomers containing alternate D-backbone configuration bind sequence-specifically to DNA and, when incubated with mammalian cells, localized specifically to the endoplasmic reticulum (ER).
View Article and Find Full Text PDFGuanidine-based peptide nucleic acid (GPNA) with a d-backbone configuration and alternate spacing binds sequence-specifically to RNA and is readily taken up by both human somatic and embryonic stem (ES) cells.
View Article and Find Full Text PDF