Food Addit Contam Part A Chem Anal Control Expo Risk Assess
March 2024
Regular testing and systematic investigation play a vital role to ensure product safety. Until now, the existing food authentication techniques have been based on proteins, lipids, and nucleic acid-based assays. Among various deoxyribonucleic acid (DNA)-based methods, the recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based bio-sensing is an innovative and fast-expanding technology.
View Article and Find Full Text PDFThe combination of Hydroponics with smart technology in farming is novel and has promise as a method for effective and environmentally friendly crop production. This technology eliminates the need for soil and reduces water usage by providing nutrients straight to the plant's roots. The Internet of Things (IoT), sensors, and automation are all used in "smart farming," which allows for constant monitoring of soil conditions, nutrient levels, and plant vitality to facilitate fine-grained management and optimization.
View Article and Find Full Text PDFThis report presents two methods for the covalent immobilization of capture antibodies on cellulose filter paper grade No. 1 (medium-flow filter paper) discs and grade No. 113 (fast-flow filter paper) discs.
View Article and Find Full Text PDFThe genome sequence available for different Plasmodium species is a valuable resource for understanding malaria parasite biology. However, comparative genomics on its own cannot fully explain all the species-specific differences which suggests that other genomic aspects such as regulation of gene expression play an important role in defining species-specific characteristics. Here, we developed a comprehensive approach to measure transcriptional changes of the evolutionary conserved syntenic orthologs during the intraerythrocytic developmental cycle across six Plasmodium species.
View Article and Find Full Text PDFImmunodeficient mouse-human chimeras provide a powerful approach to study host specific pathogens like Plasmodium (P.) falciparum that causes human malaria. Existing mouse models of P.
View Article and Find Full Text PDFVariant surface antigens play an important role in Plasmodium falciparum malaria pathogenesis and in immune evasion by the parasite. Although most work to date has focused on P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1), two other multigene families encoding STEVOR and RIFIN are expressed in invasive merozoites and on the infected erythrocyte surface.
View Article and Find Full Text PDFRecent experimental and clinical studies suggest a crucial role of mechanical splenic filtration in the host's defense against malaria parasites. Subtle changes in red blood cell (RBC) deformability, caused by infection or drug treatment, could influence the pathophysiological outcome. However, in vitro deformability measurements have not been directly linked in vivo with the splenic clearance of RBCs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Immunodeficient mouse-human chimeras provide a powerful approach to study host-specific pathogens, such as Plasmodium falciparum that causes human malaria. Supplementation of immunodeficient mice with human RBCs supports infection by human Plasmodium parasites, but these mice lack the human immune system. By combining human RBC supplementation and humanized mice that are optimized for human immune cell reconstitution, we have developed RBC-supplemented, immune cell-optimized humanized (RICH) mice that support multiple cycles of P.
View Article and Find Full Text PDFThe liver is the first organ infected by Plasmodium sporozoites during malaria infection. In the infected hepatocytes, sporozoites undergo a complex developmental program to eventually generate hepatic merozoites that are released into the bloodstream in membrane-bound vesicles termed merosomes. Parasites blocked at an early developmental stage inside hepatocytes elicit a protective host immune response, making them attractive targets in the effort to develop a pre-erythrocytic stage vaccine.
View Article and Find Full Text PDFThe severity of infections caused by the malaria parasite Plasmodium is in part due to the rapid multiplication cycles in the blood of an infected individual. A fundamental step in this phenomenon is the invasion of selected erythrocytes of the host by the parasite. The py235 rhoptry protein multigene family of the rodent malaria parasite Plasmodium yoelii has been implicated in mediating host cell selection during erythrocyte invasion and virulence.
View Article and Find Full Text PDF