Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury.
View Article and Find Full Text PDFJ Neuroinflammation
November 2023
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention.
View Article and Find Full Text PDFα-Synuclein phosphorylation and mitochondrial calcium homeostasis are important mechanisms underlying mitochondrial dysfunction in Parkinson's disease, but the network regulating these mechanisms remains unclear. We identified the role of key phosphokinases and the pathological effects of α-synuclein phosphorylation on mitochondrial calcium influx and mitochondrial function in Parkinson's disease. The function of the key phosphokinase, calcium/calmodulin-dependent serine protein kinase, was investigated through loss- and gain-of-function experiments using a cell model of Parkinson's disease.
View Article and Find Full Text PDFThe activation of cardiac fibroblasts (CFs) after myocardial infarction (MI) is essential for post-MI infarct healing, during which the regulation of transforming growth factor beta1 (TGF-1) signaling is predominant. We have demonstrated that TGF-1-mediated upregulation of LBH contributes to post-MI CF activation via modulating B-crystallin (CRYAB), after being upregulated by TGF-1. In this study, the effect of LBH-CRYAB signaling on the cardiac microenvironment via exosome communication and the corresponding mechanisms were investigated.
View Article and Find Full Text PDFThe limb-bud and heart (LBH) gene was reported to suppress nasopharyngeal carcinoma (NPC) progression in our previous study. Distant metastasis predominantly accounts for the unsatisfactory prognosis of NPC treatment, in which epithelial-mesenchymal transition (EMT) and tumor angiogenesis are of great significance. The roles of exosomes in mediating NPC progression have been highlighted in recent researches, and attempts have been made to explore the clinical application of NPC exosomes.
View Article and Find Full Text PDFObjectives: Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs.
View Article and Find Full Text PDFLimb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other.
View Article and Find Full Text PDFCardiac fibrosis is an important pathological change after myocardial infarction (MI). Its progression is essential for post-MI infarct healing, during which transforming growth factor beta1 (TGF-β1) plays a critical role. Limb-bud and Heart (LBH), a newly discovered target gene of TGF-β1, was shown to promote normal cardiogenesis.
View Article and Find Full Text PDF