Publications by authors named "Anawati Anawati"

A persistent purpose for self-powered and wearable electronic devices is the fabrication of graphene-PVDF piezoelectric nanogenerators with various co-solvents that could provide enhanced levels of durability and stability while generating a higher output. This study resulted in a piezoelectric nanogenerator based on a composite film composed of graphene, and poly (vinylidene fluoride) (PVDF) as a flexible polymer matrix that delivers high performance, flexibility, and cost-effectiveness. By adjusting the co-solvent in the solution, a graphene-PVDF piezoelectric nanogenerator can be created (acetone, THF, water, and EtOH).

View Article and Find Full Text PDF

The properties of composite coatings formed by plasma electrolytic oxidation (PEO) were affected by the alloy composition. The corrosion resistance and apatite-forming ability of PEO coatings formed on Mg-6Al-1Zn-xCa alloys with a variation of Ca content were investigated. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements showed an order magnitude improvement of corrosion resistance in the AZ61 alloy as a result of the coating.

View Article and Find Full Text PDF

Effects of alloying element Ca on the corrosion behavior and bioactivity of films formed by plasma electrolytic oxidation (PEO) on AM60 alloys were investigated. The corrosion behavior was studied by conducting electrochemical tests in 0.9% NaCl solution while the bioactivity was evaluated by soaking the specimens in simulated body fluid (SBF).

View Article and Find Full Text PDF

We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this one is its continuous tunability due to the fact that the used LC does not exhibit reverse tilt domain defects and threshold effects. Furthermore, the dual-frequency features of the LC enables electrical control of the spectral position of the bandgaps towards both shorter and longer wavelengths in the same device.

View Article and Find Full Text PDF

Photonic crystal fibers (PCFs) have attracted significant attention during the last years and much research has been devoted to develop fiber designs for various applications, hereunder tunable fiber devices. Recently, thermally and electrically tunable PCF devices based on liquid crystals (LCs) have been demonstrated. However, optical tuning of the LC PCF has until now not been demonstrated.

View Article and Find Full Text PDF