Optical pulling provides a new degree of freedom in optical manipulation. It is generally believed that long-range optical pulling forces cannot be generated by the gradient of the incident field. Here, we theoretically propose and numerically demonstrate the realization of a long-range optical pulling force stemming from a self-induced gradient field in the manipulated object.
View Article and Find Full Text PDFTwo-dimensional single crystal metals, in which the behavior of highly confined optical modes is intertwined with quantum phenomena, are highly sought after for next-generation technologies. Here, we report large area (>10 μm), single crystal two-dimensional gold flakes (2DGFs) with thicknesses down to a single nanometer level, employing an atomic-level precision chemical etching approach. The decrease of the thickness down to such scales leads to the quantization of the electronic states, endowing 2DGFs with quantum-confinement-augmented optical nonlinearity, particularly leading to more than two orders of magnitude enhancement in harmonic generation compared with their thick polycrystalline counterparts.
View Article and Find Full Text PDFUltrafast nonlinearity, which results in modulation of the linear optical response, is a basis for the development of time-varying media, in particular those operating in the epsilon-near-zero (ENZ) regime. Here, we demonstrate that the intraband excitation of hot electrons in the ENZ film results in a second-harmonic resonance shift of ∼10 THz (40 nm) and second-harmonic generation (SHG) intensity changes of >100% with only minor (<1%) changes in linear transmission. The modulation is 10-fold enhanced by a plasmonic metasurface coupled to a film, allowing for ultrafast modulation of circularly polarized SHG.
View Article and Find Full Text PDFApplications in photodetection, photochemistry, and active metamaterials and metasurfaces require fundamental understanding of ultrafast nonthermal and thermal electron processes in metallic nanosystems. Significant progress has been recently achieved in synthesis and investigation of low-loss monocrystalline gold, opening up opportunities for its use in ultrathin nanophotonic architectures. Here, we reveal fundamental differences in hot-electron thermalisation dynamics between monocrystalline and polycrystalline ultrathin (down to 10 nm thickness) gold films.
View Article and Find Full Text PDFBiofilm formation, or microfouling, is a basic strategy of bacteria to colonise a surface and may happen on surfaces of any nature whenever bacteria are present. Biofilms are hard to eradicate due to the matrix in which the bacteria reside, consisting of strong, adhesive and adaptive self-produced polymers such as eDNA and functional amyloids. Targeting a biofilm matrix may be a promising strategy to prevent biofilm formation.
View Article and Find Full Text PDFHigh-index dielectric nanoantennas, which provide an interplay between electric and magnetic modes, have been widely used as building blocks for a variety of devices and metasurfaces, both in linear and nonlinear regimes. Here, we investigate hybrid metal-semiconductor nanoantennas, consisting of a multimode silicon nanopillar core coated with a gold layer, that offer an enhanced degree of control over the mode selection and confinement, and emission of light on the nanoscale exploiting high-order electric and magnetic resonances. Cathodoluminescence spectra revealed a multitude of resonant modes supported by the nanoantennas due to hybridization of the Mie resonances of the core and the plasmonic resonances of the shell.
View Article and Find Full Text PDFUltrafast interfacing of electrical and optical signals at the nanoscale is highly desired for on-chip applications including optical interconnects and data processing devices. Here, we report electrically driven nanoscale optical sources based on metal-insulator-graphene tunnel junctions (MIG-TJs), featuring waveguided output with broadband spectral characteristics. Electrically driven inelastic tunneling in a MIG-TJ, realized by integrating a silver nanowire with graphene, provides broadband excitation of plasmonic modes in the junction with propagation lengths of several micrometers (∼10 times larger than that for metal-insulator-metal junctions), which therefore propagate toward the junction edge with low loss and couple to the nanowire waveguide with an efficiency of ∼70% (∼1000 times higher than that for metal-insulator-metal junctions).
View Article and Find Full Text PDFThe optically driven acoustic modes and nonlinear response of plasmonic nanoparticles are important in many applications, but are strongly resonant, which restricts their excitation to predefined wavelengths. Here, we demonstrate that multilayered spherical plasmonic hetero-nanoparticles, formed by alternating layers of gold and silica, provide a platform for a broadband nonlinear optical response from visible to near-infrared wavelengths. They also act as a tunable optomechanical system with mechanically decoupled layers in which different acoustic modes can be selectively switched on/off by tuning the excitation wavelength.
View Article and Find Full Text PDFCopper sulphide (covellite) nanoplatelets have recently emerged as a plasmonic platform in the near-infrared with ultrafast nonlinear optical properties. Here we demonstrate that the free-carrier density in CuS, which is an order of magnitude lower than in traditional plasmonic metals, can be further tuned by chemical doping. Using ion exchange to replace Cu with an increasing content of Zn in the nanoparticles, the free-hole density can be lowered, resulting in a long-wavelength shift of the localised plasmon resonances from 1250 nm to 1750 nm.
View Article and Find Full Text PDFα-FeO (hematite) thin films have been shown to be a robust sensor substrate for photoelectrochemical imaging with good stability and high spatial resolution. Herein, one-dimensional (1D) hematite nanorods (NRs) synthesized via a simple hydrothermal method are proposed as a substrate which provides nanostructured surfaces with enhanced photocurrent responses compared to previously described hematite films, good stability, and excellent spatial resolution for potential imaging applications. The photoelectrochemical sensing capability of hematite NRs was demonstrated by a high pH sensitivity without modification.
View Article and Find Full Text PDFTransverse spin momentum related to the spin angular momentum (SAM) of light has been theoretically studied recently and predicted to generate an intriguing optical lateral force (OLF). Despite extensive studies, there is no direct experimental evidence of a stable OLF resulting from the dominant SAM rather than the ubiquitous spin-orbit interaction in a single light beam. Here, we theoretically unveil the nontrivial physics of SAM-correlated OLF, showing that the SAM is a dominant factor for the OLF on a nonabsorbing particle, while an additional force from the canonical (orbital) momentum is exhibited on an absorbing particle due to the spin-orbit interaction.
View Article and Find Full Text PDFMolecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials.
View Article and Find Full Text PDFSpin-forbidden excitons in monolayer transition metal dichalcogenides are optically inactive at room temperature. Probing and manipulating these dark excitons are essential for understanding exciton spin relaxation and valley coherence of these 2D materials. Here, we show that the coupling of dark excitons to a metal nanoparticle-on-mirror cavity leads to plasmon-induced resonant emission with the intensity comparable to that of the spin-allowed bright excitons.
View Article and Find Full Text PDFNanoparticle-on-mirror plasmonic nanocavities, capable of extreme optical confinement and enhancement, have triggered state-of-the-art progress in nanophotonics and development of applications in enhanced spectroscopies. However, the optical quality factor and thus performance of these nanoconstructs are undermined by the granular polycrystalline metal films (especially when they are optically thin) used as a mirror. Here, we report an atomically smooth single-crystalline platform for low-loss nanocavities using chemically synthesized gold microflakes as a mirror.
View Article and Find Full Text PDFUltrashort optical pulses are integral to probing various physical, chemical, and biological phenomena and feature in a whole host of applications, not least in data communications. Super- and subluminal pulse propagation and dispersion management (DM) are two of the greatest challenges in producing or counteracting modifications of ultrashort optical pulses when precise control over pulse characteristics is required. Progress in modern photonics toward integrated solutions and applications has intensified this need for greater control of ultrafast pulses in nanoscale dimensions.
View Article and Find Full Text PDFSymmetry and topology govern many electronic, magnetic, and photonic phenomena in condensed matter physics and optics, resulting in counterintuitive skyrmion, meron, and other phenomena important for modern technologies. Here we demonstrate photonic spin lattices as a new topological construct governed by the spin-orbit coupling in an optical field. The symmetry of the electromagnetic field in the presence of the spin-orbit interaction may result in only two types of photonic spin lattices: either hexagonal spin-skyrmion or square spin-meron lattices.
View Article and Find Full Text PDFValley-dependent excitation and emission in transition metal dichalcogenides (TMDCs) have recently emerged as a new avenue for optical data manipulation, quantum optical technologies, and chiral photonics. The valley-polarized electronic states can be optically addressed through photonic spin-orbit interaction of excitonic emission, typically with plasmonic nanostructures, but their performance is limited by the low quantum yield of neutral excitons in TMDC multilayers and the large Ohmic loss of plasmonic systems. Here, we demonstrate a valleytronic system based on the trion emission in high-quantum-yield WS monolayers chirally coupled to a low-loss microfiber.
View Article and Find Full Text PDFExcited carrier dynamics in plasmonic nanostructures determines many important optical properties such as nonlinear optical response and photocatalytic activity. Here it is shown that mesoscopic plasmonic covellite nanocrystals with low free-carrier concentration exhibit a much faster carrier relaxation than in traditional plasmonic materials. A nonequilibrium hot-carrier population thermalizes within first 20 fs after photoexcitation.
View Article and Find Full Text PDFEfficient frequency up-conversion of coherent light at the nanoscale is highly demanded for a variety of modern photonic applications, but it remains challenging in nanophotonics. Surface second-order nonlinearity of noble metals can be significantly boosted up by plasmon-induced field enhancement, however the related far-field second-harmonic generation (SHG) may also be quenched in highly symmetric plasmonic nanostructures despite huge near-field amplification. Here, we demonstrate that the SHG from a single gold nanosphere is significantly enhanced when tightly coupled to a metal film, even in the absence of a plasmon resonance at the SH frequency.
View Article and Find Full Text PDFPrecise position sensing and nanoscale optical rulers are important in many applications in nanometrology, gravitational wave detection and quantum technologies. Several implementations of such nanoscale displacement sensors have been recently developed based on interferometers, nanoantennas, optical field singularities and optical skyrmions. Here, we propose a method for ultrasensitive displacement measurements based on the directional imbalance of the excitation of Bloch surface waves by an asymmetric double slit, which have low propagation loss and provide high detected intensity.
View Article and Find Full Text PDFEfficient point-of-care diagnosis of severe acute respiratory syndrome-corovavirus-2 (SARS-CoV-2) is crucial for the early control of novel coronavirus infections. At present, polymerase chain reaction (PCR) is primarily used to detect SARS-CoV-2. Despite the high sensitivity, the PCR process is time-consuming and complex which limits its applicability for rapid testing of large-scale outbreaks.
View Article and Find Full Text PDFWe demonstrate, experimentally and theoretically, a new class of angle-insensitive band-pass optical filters that utilize anisotropy of plasmonic nanorod metamaterials, in both ε ≃ -1 and epsilon-near-infinity regimes, to minimize dependence of optical path on the incident angle. The operating wavelength and bandwidth of the filter can be engineered by controlling the geometry of the metamaterial. Experimental results are in agreement with full wave numerical and analytical solutions of the Maxwell's equations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2021
Spin-momentum locking, a manifestation of topological properties that governs the behavior of surface states, was studied intensively in condensed-matter physics and optics, resulting in the discovery of topological insulators and related effects and their photonic counterparts. In addition to spin, optical waves may have complex structure of vector fields associated with orbital angular momentum or nonuniform intensity variations. Here, we derive a set of spin-momentum equations which describes the relationship between the spin and orbital properties of arbitrary complex electromagnetic guided modes.
View Article and Find Full Text PDFHot carriers generated by plasmonic excitations have recently opened up new avenues in photocatalysis. The transfer of these energetic carriers to adjacent molecules can promote chemical transformations that are important for hydrogen generation by water splitting, CO reduction and degradation of organic pollutants. Here, we have developed and optimised a plasmonic hot-carrier catalytic system based on silica nanoparticles decorated with plasmonic gold nanoparticles as a source of hot carriers, equipped with platinum nanoclusters as co-catalyst for the enhancement of hot-carrier extraction.
View Article and Find Full Text PDFNonlinear frequency conversion at the nanoscale is important for many applications in free space and integrated photonics. In epsilon-near-zero (ENZ) materials, second-harmonic generation (SHG) is significantly enhanced but the oblique incidence is required to address nonlinearity. To circumvent this constraint, we design a hybrid metasurface consisting of plasmonic nanostructures on an ENZ nanofilm generating strongly enhanced SHG at normal incidence in transmission.
View Article and Find Full Text PDF