Tactile and motor imagery are crucial components of sensorimotor functioning and cognitive neuroscience research, yet the neural mechanisms of tactile imagery remain underexplored compared to motor imagery. This study employs multichannel functional near-infrared spectroscopy (fNIRS) combined with image reconstruction techniques to investigate the neural hemodynamics associated with tactile (TI) and motor imagery (MI). In a study of 15 healthy participants, we found that MI elicited significantly greater hemodynamic responses (HRs) in the precentral area compared to TI, suggesting the involvement of different cortical areas involved in two different types of sensorimotor mental imagery.
View Article and Find Full Text PDFUnderstanding diverse responses of individual cells to the same perturbation is central to many biological and biomedical problems. Current methods, however, do not precisely quantify the strength of perturbation responses and, more importantly, reveal new biological insights from heterogeneity in responses. Here we introduce the perturbation-response score (PS), based on constrained quadratic optimization, to quantify diverse perturbation responses at a single-cell level.
View Article and Find Full Text PDFWhile humans routinely distinguish between physical and mental actions, overt movements (OM) and kinesthetically imagined movements (IM) are often viewed as forming a continuum of activities. Here, we theoretically conceptualized this continuum hypothesis for agentive awareness related to OM and IM and tested it experimentally using quasi-movements (QM), a little studied type of covert actions, which is considered as an inner part of the OM-IM continuum. QM are performed when a movement attempt is minimized down to full extinction of overt movement and muscle activity.
View Article and Find Full Text PDFQuasi-movements (QM) are observed when an individual minimizes a movement to an extent that no related muscle activation is detected. Likewise to imaginary movements (IM) and overt movements, QMs are accompanied by the event-related desynchronization (ERD) of EEG sensorimotor rhythms. Stronger ERD was observed under QMs compared to IMs in some studies.
View Article and Find Full Text PDFBackground: Motor imagery engages much of the same neural circuits as an overt movement. Therefore, the mental rehearsal of movements is often used to supplement physical training and might aid motor neurorehabilitation after stroke. One attempt to capture the brain's involvement in imagery involves the use, as a marker, of the depression or event-related desynchronization (ERD) of thalamocortical sensorimotor rhythms found in a human electroencephalogram (EEG).
View Article and Find Full Text PDFGaze-based input is an efficient way of hand-free human-computer interaction. However, it suffers from the inability of gaze-based interfaces to discriminate voluntary and spontaneous gaze behaviors, which are overtly similar. Here, we demonstrate that voluntary eye fixations can be discriminated from spontaneous ones using short segments of magnetoencephalography (MEG) data measured immediately after the fixation onset.
View Article and Find Full Text PDFThe use of an electroencephalogram (EEG) anticipation-related component, the expectancy wave (E-wave), in brain-machine interaction was proposed more than 50 years ago. This possibility was not explored for decades, but recently it was shown that voluntary attempts to select items using eye fixations, but not spontaneous eye fixations, are accompanied by the E-wave. Thus, the use of the E-wave detection was proposed for the enhancement of gaze interaction technology, which has a strong need for a mean to decide if a gaze behavior is voluntary or not.
View Article and Find Full Text PDFBackground: Metagenomic surveys of human microbiota are becoming increasingly widespread in academic research as well as in food and pharmaceutical industries and clinical context. Intuitive tools for investigating experimental data are of high interest to researchers.
Results: Knomics-Biota is a web-based resource for exploratory analysis of human gut metagenomes.
Motor imagery (MI) is considered to be a promising cognitive tool for improving motor skills as well as for rehabilitation therapy of movement disorders. It is believed that MI training efficiency could be improved by using the brain-computer interface (BCI) technology providing real-time feedback on person's mental attempts. While BCI is indeed a convenient and motivating tool for practicing MI, it is not clear whether it could be used for predicting or measuring potential positive impact of the training.
View Article and Find Full Text PDF