Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool.
View Article and Find Full Text PDFThe gibberellin (GA)-sensitive dwarfing gene provides an opportunity to genetically reduce plant height in rye. Genetic analysis in a population of recombinant inbred lines confirmed a monogenetic dominant inheritance of . Significant phenotypic differences in PH between homo- and heterozygotic genotypes indicate an incomplete dominance of .
View Article and Find Full Text PDFThe post-zygotic reproductive isolation (RI) in plants is frequently based on the negative interaction of the parental genes involved in plant development. Of special interest is the study of such types of interactions in crop plants, because of the importance of distant hybridization in plant breeding. This study is devoted to map rye genes that are incompatible with wheat, determining the development of the shoot apical meristem in wheat⁻rye hybrids.
View Article and Find Full Text PDFThe color of grain in cereals is determined mainly by anthocyanin pigments. A large level of genetic diversity for anthocyanin content and composition in the grain of different species was observed. In rye, recessive mutations in six genes (vi1.
View Article and Find Full Text PDFThe wheat and rye spike normally bears one spikelet per rachis node, and the appearance of supernumerary spikelets is rare. The loci responsible for the 'multirow spike' or MRS trait in wheat, and the 'monstrosum spike' trait in rye were mapped by genotyping F(2) populations with microsatellite markers. Both MRS and the 'monstrosum' trait are under the control of a recessive allele at a single locus.
View Article and Find Full Text PDF