Background: The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis.
Results: Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota.
Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H as the end metabolic products. Strains ASD3451 and ASD5720 were motile, fermented lactose and raffinose, and weakly fermented maltose.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-β peptide (Aβ) oligomers play a crucial role in AD pathogenesis. AlldEnantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aβ aggregates.
View Article and Find Full Text PDFAlzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides () triggers the disease. accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques.
View Article and Find Full Text PDFSialidases, or neuraminidases, are involved in several human disorders such as neurodegenerative, infectious and cardiovascular diseases, and cancers. Accumulative data have shown that inhibition of neuraminidases, such as NEU1 sialidase, may be a promising pharmacological target, and selective inhibitors of NEU1 are therefore needed to better understand the biological functions of this sialidase. In the present study, we designed interfering peptides (IntPep) that target a transmembrane dimerization interface previously identified in human NEU1 that controls its membrane dimerization and sialidase activity.
View Article and Find Full Text PDFTrichobakin (TBK) is a type-I ribosome-inactivating protein (RIP-I), acting as an extremely potent inhibitor of protein synthesis in the cell-free translation system of rabbit reticulocyte lysate (IC: 3.5 pM). In this respect, TBK surpasses the well-studied highly homologous RIP-I trichosanthin (IC: 20-27 pM), therefore creation of recombinant toxins based on it is of great interest.
View Article and Find Full Text PDFAlzheimer's disease is an age-related pathology associated with accumulation of amyloid-β peptides, products of enzymatic cleavage of amyloid-β precursor protein (APP) by secretases. Several familial mutations causing early onset of the disease have been identified in the APP transmembrane (TM) domain. The mutations influence production of amyloid-β, but the molecular mechanisms of this effect are unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2019
Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces.
View Article and Find Full Text PDFBackground: Prior studies of the human growth hormone receptor (GHR) revealed a distinct role of spatial rearrangements of its dimeric transmembrane domain in signal transduction across membrane. Detailed structural information obtained in the present study allowed elucidating the bases of such rearrangement and provided novel insights into receptor functioning.
Methods: We investigated the dimerization of recombinant TMD fragment GHR by means of high-resolution NMR in DPC micelles and molecular dynamics in explicit POPC membrane.
Structural investigations need ready supply of the isotope labeled proteins with inserted mutations n the quantities sufficient for the heteronuclear NMR. Though cell-free expression system has been widely used in the past years, high startup cost and complex compound composition prevent many researches from the developing this technique, especially for membrane protein production. Here we demonstrate the utility of a robust, cost-optimized cell-free expression technique for production of the physiologically important transmembrane fragment of amyloid precursor protein, APP686-726, containing Alzheimer's disease mutations in the juxtamembrane (E693G, Arctic form) and the transmembrane parts (V717G, London form, or L723P, Australian form).
View Article and Find Full Text PDF