Publications by authors named "Anatoly Pinchuk"

Radiopharmaceutical therapy (RPT) enhances tumor response to immune checkpoint inhibitors (ICI) in preclinical models, but the effects of different radioisotopes have not been thoroughly compared. To evaluate mechanisms of response to RPT+ICI, we used NM600, an alkylphosphocholine selectively taken up by most tumors. Effects of Y-, Lu-, and Ac-NM600 + ICIs were compared in syngeneic murine models, B78 melanoma (poorly immunogenic) and MC38 colorectal cancer (immunogenic).

View Article and Find Full Text PDF
Article Synopsis
  • Radiopharmaceutical therapies (RPT) trigger a type I interferon (IFN1) response in tumor cells, with the response varying based on the type of isotope used.
  • In experiments with murine tumor models, the timing and intensity of the IFN1 response were linked to the isotope's half-life and energy transfer properties.
  • Combining Ac-NM600 with immune checkpoint inhibitors enhanced survival in wild-type tumors, suggesting that the effectiveness of RPT is influenced by the radioisotope and relies on STING pathways for immune response enhancement.
View Article and Find Full Text PDF

We have previously described the remarkable capacity of radioiodinated alkyl phospholipids to be sequestered and retained by a variety of tumors in vivo. We have already established the influence of certain structural parameters of iodinated alkyl phospholipids on tumor avidity, such as stereochemistry at the -2 carbon of alkylglycerol phosphocholines, -or -position of iodine in the aromatic ring of phenylalkyl phosphocholines, and the length of the alkyl chain in alkyl phospholipids. In order to determine the additional structural requirements for tumor uptake and retention, three new radioiodinated alkylphospholipid analogs, , were synthesized as potential tumor imaging agents.

View Article and Find Full Text PDF

Objectives: In an effort to exploit the elevated need for phospholipids displayed by cancer cells relative to normal cells, we have developed tumor-targeted alkylphosphocholines (APCs) as broad-spectrum cancer imaging and therapy agents. Radioactive APC analogs have exhibited selective uptake and prolonged tumor retention in over 50 cancer types in preclinical models, as well as over 15 cancer types in over a dozen clinical trials. To push the structural limits of this platform, we recently added a chelating moiety capable of binding gadolinium and many other metals for cancer-targeted magnetic resonance imaging (MRI), positron emission tomography imaging, and targeted radionuclide therapy.

View Article and Find Full Text PDF

We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using polymerization.

View Article and Find Full Text PDF

There is a clinically unmet need for effective treatments for triple-negative breast cancer (TNBC), as it remains the most aggressive subtype of breast cancer. Herein, we demonstrate a promising strategy using a tumor-targeting alkylphosphocholine (NM600) for targeted radionuclide therapy of TNBC. NM600 was radiolabeled with Y for PET imaging and Lu for targeted radionuclide therapy.

View Article and Find Full Text PDF

Alkylphosphocholine (APC) analogs are a novel class of broad-spectrum tumor-targeting agents that can be used for both diagnosis and treatment of cancer. The potential for clinical translation for APC analogs will strongly depend on their pharmacokinetic (PK) profiles. The aim of this work was to understand how the chemical structures of various APC analogs impact binding and PK.

View Article and Find Full Text PDF

Finding improved therapeutic strategies against T-cell Non-Hodgkin's Lymphoma (NHL) remains an unmet clinical need. We implemented a theranostic approach employing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with Y for positron emission tomography (PET) imaging and Y for targeted radionuclide therapy (TRT) of T-cell NHL. PET imaging and biodistribution performed in mouse models of T-cell NHL showed in vivo selective tumor uptake and retention of Y-NM600.

View Article and Find Full Text PDF

Over the past two decades, synergistic innovations in imaging technology have resulted in a revolution in which a range of biomedical applications are now benefiting from fluorescence imaging. Specifically, advances in fluorophore chemistry and imaging hardware, and the identification of targetable biomarkers have now positioned intraoperative fluorescence as a highly specific real-time detection modality for surgeons in oncology. In particular, the deeper tissue penetration and limited autofluorescence of near-infrared (NIR) fluorescence imaging improves the translational potential of this modality over visible-light fluorescence imaging.

View Article and Find Full Text PDF

Many solid tumors contain an overabundance of phospholipid ethers relative to normal cells. Capitalizing on this difference, we created cancer-targeted alkylphosphocholine (APC) analogs through structure-activity analyses. Depending on the iodine isotope used, radioiodinated APC analog CLR1404 was used as either a positron emission tomography (PET) imaging ((124)I) or molecular radiotherapeutic ((131)I) agent.

View Article and Find Full Text PDF

Herein, we demonstrate for the first time the use of hydrogel-in-liposome nanoparticles (lipogels) as a promising drug delivery vehicle for the active encapsulation of the anticancer drug 17-DMAPG, a geldanamycin (GA) derivative. This model drug was chosen due to its improved aqueous solubility (4.6 mg/ml) compared to the parent GA (<0.

View Article and Find Full Text PDF

A rapid and specific LC-MS/MS based bioanalytical method was developed and validated for the determination of 18-(p-iodophenyl)octadecyl phosphocholine (CLR1401), a novel phosphocholine drug candidate, in rat plasma. The optimal chromatographic behavior of CLR1401 was achieved on a Kromasil silica column (50 mm x 3 mm, 5 microm) under hydrophilic interaction chromatography. The total LC analysis time per injection was 2.

View Article and Find Full Text PDF

Radioiodinated phospholipid ether analogues have shown a remarkable ability to selectively accumulate in a variety of human and animal tumors in xenograft and spontaneous tumor rodent models. It is believed that this tumor avidity arises as a consequence of metabolic differences between tumor and corresponding normal tissues. The results of this study indicate that one factor in the tumor retention of these compounds in tumors is the length of the alkyl chain that determines their hydrophobic properties.

View Article and Find Full Text PDF