Publications by authors named "Anatoly N Tiulpakov"

One of the causes of diabetes in infants is the defect of the insulin gene (INS). Gene mutations can lead to proinsulin misfolding, an increased endoplasmic reticulum (ER) stress and possible beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear.

View Article and Find Full Text PDF

Neonatal severe primary hyperparathyroidism (NSHPT) is a rare autosomal recessive disorder of calcium homeostasis that manifests shortly after birth with hypercalcemia and bone disease. NSHPT, in most cases, is attributed to mutations in the calcium-sensing receptor (CASR) gene. We reprogrammed dermal fibroblasts derived from a patient with NSHPT carrying a compound heterozygous mutation in the CASR gene into induced pluripotent stem cells (iPSCs).

View Article and Find Full Text PDF

One of the variants of congenital dysfunction of the adrenal cortex is a deficiency of the enzyme P450scc, which catalyzes the first stage of steroidogenesis. This is a rare autosomal recessive disease, the classic manifestation of which is primary adrenal insufficiency with a deficiency of gluco-and mineralocorticoids and a violation of the synthesis of sex steroids, which usually leads to a complete lack of masculinization in patients with karyotype 46, XY and hypergonadotropic hypogonadism in both sexes. Previously, it was suggested That p450scc deficiency is incompatible with the normal course of pregnancy, since the enzyme is expressed in the placenta, where it is necessary for the synthesis of progesterone, the main pregnancy hormone, and, consequently, the birth of a child with A p450scc deficiency is impossible.

View Article and Find Full Text PDF

Steroidogenic factor 1 (SF1, NR5A1) is a nuclear receptor that regulates multiple genes involved in adrenal and gonadal development, steroidogenesis, and the reproductive axis. Human mutations in SF1 were initially found in patients with severe gonadal dysgenesis and primary adrenal failure. However, more recent case reports have suggested that heterozygous mutations in SF1 may also be found in patients with 46,XY partial gonadal dysgenesis and underandrogenization but normal adrenal function.

View Article and Find Full Text PDF

Insulin gene (INS) mutations prove to be the second most common cause of permanent neonatal diabetes. Here, we report the generation of iPSC line from a patient, heterozygous for the intronic INS mutation that presumably leads to aberrant splicing. Dermal fibroblasts were reprogrammed using non-integrating RNA-based vector.

View Article and Find Full Text PDF