The micromechanism of the low-cycle fatigue of mono- and multilayer PVD coatings on cutting tools was investigated. Multilayer nanolaminate (TiAlCrSiY)N/(TiAlCr)N and monolayer (TiAlCrSiY)N PVD coatings were deposited on the cemented carbide ball nose end mills. Low-cycle fatigue resistance was studied using the cyclic nanoindentation technique.
View Article and Find Full Text PDFOptimization of the composition of a new generation of bi-nano-multilayered TiAlCrSiN/TiAlCrN-based coatings is outlined in this study for the machining of direct aged (DA) Inconel 718 alloy. Three types of TiAlCrSiN/TiAlCrN-based bi-nano-multi-layer coatings with varying chemical compositions were investigated: (1) a previous state-of-the-art TiAlCrSiYN/TiAlCrN (coating A); (2) TiAlCrSiN/TiAlCrN with increased amount of Si (up to 8 at.%; coating B); (3) a new TiAlCrSiYN/TiAlCrN coating (coating C) with an increased amount of both Si and Y (up to 5 at.
View Article and Find Full Text PDFA big amount of solid wastes or dump sludges is generated after leaching vanadium (V) from a roasted mixture. As the vanadium content in these tailings is comparable to its concentration in traditional vanadium sources such as titanomagnetite ores or a vanadium converter slag, these wastes could be recycled to extract additional vanadium. Therefore, this research was aimed on studies of vanadium-containing sludges resulting from hydrometallurgical production of vanadium pentoxide to find an optimal technology for V extraction.
View Article and Find Full Text PDFMetallurgical vanadium-containing converter slag could be used as an alternative vanadium source. The development of a physico-chemical basis for the comprehensive processing of industrial vanadium-containing debris requires information about their elemental composition as well as the oxidation degrees of the elements and forms of compounds in order to solve two key problems: a better utilization of industrial wastes and a lowering of environment impact. This research was aimed at the development of methods to determine the fractions of elements and their oxidation degrees in vanadium-containing industrial debris exemplified by basic oxygen converter vanadium slags.
View Article and Find Full Text PDFExperimental investigations of nano-scale spatio-temporal effects that occur on the friction surface under extreme tribological stimuli, in combination with thermodynamic modeling of the self-organization process, are presented in this paper. The study was performed on adaptive PVD (physical vapor deposited) coatings represented by the TiAlCrSiYN/TiAlCrN nano-multilayer PVD coating. A detailed analysis of the worn surface was conducted using scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Auger electron spectroscopy (AES) methods.
View Article and Find Full Text PDFAdaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment.
View Article and Find Full Text PDF