We investigate a hybrid heterostructure with magnetic skyrmions (Sk) inside a chiral ferromagnet interfaced by a thin superconducting film via an insulating barrier. The barrier prevents electronic transport between the superconductor and the chiral magnet, such that the coupling can occur only through the magnetic fields generated by these materials. We find that Pearl vortices (PV) are generated spontaneously in the superconductor within the skyrmion radius, while anti-Pearl vortices (PV[over ¯]) compensating the magnetic moment of the Pearl vortices are generated outside of the Sk radius, forming an energetically stable topological hybrid structure.
View Article and Find Full Text PDFWe consider the amplitude (Higgs) mode in a superconductor with a condensate flow (supercurrent). We demonstrate that, in this case, the amplitude mode corresponding to oscillations δ|Δ|_{Ω}exp(iΩt) of the superconducting gap is excited by an external ac electric field E_{Ω}exp(iΩt) already in the first order in |E_{Ω}|, so that δ|Δ|_{Ω}∝(v_{0}E_{Ω}), where v_{0} is the velocity of the condensate. The frequency dependence δ|Δ|_{Ω} has a resonance shape with a maximum at Ω=2Δ.
View Article and Find Full Text PDF