Polymers (Basel)
July 2024
The effect of plant-based fillers on thermal resistance in highly filled biocomposites based on ethylene-vinyl acetate copolymer (EVA) was studied. Wood flour and microcrystalline cellulose were used as fillers. It was shown that the introduction of microcrystalline cellulose into EVA did not affect the thermal stability of the polymer matrix.
View Article and Find Full Text PDFElectrospun ultrathin fibers based on binary compositions of polylactide (PLA) and poly(ε-caprolactone) (PCL) with the various content from the polymer ratio from 0/100 to 100/0 have been explored. Combining thermal (DSC) and spectropy (ESR) techniques, the effect of biopolymer content on the characteristics of the crystal structure of PLA and PCL and the rotative diffusion of the stable TEMPO radical in the intercrystallite areas of PLA/PCL compositions was shown. It was revealed that after PLA and PCL blending, significant changes in the degree of crystallinity of PLA, PCL segment mobility, sorption of the Tempo probe, as well as its activation energy of rotation in the intercrystalline areas of PLA/PCL fibers, were evaluated.
View Article and Find Full Text PDFACS Appl Bio Mater
April 2024
This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.
View Article and Find Full Text PDFElectrospun biomimetic materials based on polyester of natural origin poly-3-hudroxybutyrate (PHB) modified with hemin (Hmi) and fibrinogen (Fbg) represent a great interest and are potentially applicable in various fields. Here, we describe formulation of the new fibrous PHB-Fbg and PHB-Hmi-Fbg materials with complex structure for biomedical application. The average diameter of the fibers was 3.
View Article and Find Full Text PDFPolymers (Basel)
October 2023
In order to create new biodegradable nanocomposites for biomedicine, packaging, and environmentally effective adsorbents, ultra-thin composite fibers consisting of poly(3-hydroxybutyrate) (PHB) and graphene oxide (GO) were obtained by electrospinning. Comprehensive studies of ultrathin fibers combining thermal characteristics, dynamic electron paramagnetic resonance (ESR) probe measurements, and scanning electron microscopy (SEM) were carried out. It is shown that at the addition of 0.
View Article and Find Full Text PDFTraditional butyl rubber halogenation technology involves the halogenation of IIR using molecular chlorine or bromine in a solution. However, this method is technologically complex. This study investigated a novel method for the halogenation of butyl rubber to enhance its stability and resistance to thermal oxidation and aggressive media.
View Article and Find Full Text PDFHighly filled biocomposites may be used as biodegradable masterbatches that manufacturers add to traditional polymers for making plastic goods more biodegradable. Biocomposites based on various trademarks of ethylene-vinyl acetate copolymer (EVA) and natural vegetable fillers (wood flour and microcrystalline cellulose) were studied. The EVA trademarks differed both in terms of the melt flow index and in the content of vinyl acetate groups.
View Article and Find Full Text PDFThis work addresses the challenges concerning the development of "all-green" high-performance biodegradable membrane materials based on poly-3-hydroxybutyrate (PHB) and a natural biocompatible functional additive, iron-containing porphyrin, Hemin (Hmi) via modification and surface functionalization. A new facile and versatile approach based on electrospinning (ES) is advanced when modification of the PHB membranes is performed by the addition of low concentrations of Hmi (from 1 to 5 wt.%).
View Article and Find Full Text PDF[...
View Article and Find Full Text PDFDue to the current environmental situation, biopolymers are replacing the usual synthetic polymers, and special attention is being paid to poly-3-hydroxybutyrate (PHB), which is a biodegradable polymer of natural origin. In this paper, the rate of biodegradation of films and fibers based on PHB was compared. The influence of exposure to soil on the structure and properties of materials was evaluated using methods of mechanical analysis, the DSC method and FTIR spectroscopy.
View Article and Find Full Text PDFDeveloping biodegradable materials based on polymer blends with a programmable self-destruction period in the environmental conditions of living systems is a promising direction in polymer chemistry. In this work, novel non-woven fibrous materials obtained by electrospinning based on the blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) were developed. The kinetics of biodegradation was studied in the aquatic environment of the inoculum of soil microorganisms.
View Article and Find Full Text PDFThe effect of the hemin (Hmi) on the structure and properties of nanocomposite electrospun materials based on poly-3-hydroxybutyrate (PHB) is discussed in the article. The additive significantly affected the morphology of fibers allowed to produce more elastic material and provided high antimicrobial activity. The article considers also the impact of the hemin on the biocompatibility of the nonwoven material based on PHB and the prospects for wound healing.
View Article and Find Full Text PDFComprehensive studies combining X-ray diffraction analysis, thermophysical, dynamic measurements by probe method and scanning electron microscopy have been carried out. The peculiarity of the crystalline and amorphous structure of ultra-thin fibers based on poly(3-hydroxybutyrate) (PHB) containing minor concentrations (0-5%) of a gene and a tetraphenylporphyrin (TFP) complex with iron (in the form of FeCl) are considered. When these complexes are added to the PHB fibers, the morphology of the fibers change: a sharp change in the crystallinity and molecular mobility in the amorphous regions of PHB is observed.
View Article and Find Full Text PDFThe purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied.
View Article and Find Full Text PDF