Publications by authors named "Anatoly A Kataev"

Hydrolyzable tannin (3,6-bis-O-digalloyl-1,2,4-tri-O-galloyl-β-d-glucose) has a dual effect on the cell membrane: (1) it binds to a plasmalemmal protein of the Chara corallina cell (C = 2.7 ± 0.3 μM) and (2) it forms ionic channels in the lipid membrane.

View Article and Find Full Text PDF

We studied the influence of Bacillus cereus bacteria on cells of the freshwater alga Chara corallina. These bacteria and recombinant Bacillus subtilis strains are capable of producing the secreted toxin HlyII, which changes the electrophysiological parameters of the algal electrically excitable plasma membrane by forming pores. Cooperative incubation of bacterial cells, which carry active hlyII gene, and Chara corallina cells caused a decrease in the resting potential (V(m)) and plasma membrane resistance (R(m)) of algal cells.

View Article and Find Full Text PDF

The specific complexes of human alpha-lactalbumin (alpha-LA) with oleic acid (OA), HAMLET and LA-OA-17 (OA-complexes), possess cytotoxic activity against tumor cells but the mechanism of their cell penetration remains unclear. To explore the molecular mechanisms underlying interaction of the OA-complexes with the cell membrane, their interactions with small unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles and electroexcitable plasma membrane of internodal native and perfused cells of the green alga Chara corallina have been studied. The fractionation (Sephadex G-200) of mixtures of the OA-complexes with the vesicles shows that OA-binding increases the affinity of alpha-LA to DPPC vesicles.

View Article and Find Full Text PDF

The voltage-clamp technique was used to study Ca(2+) and Cl(-) transient currents in the plasmalemma of tonoplast-free and intact Chara corallina cells. In tonoplast-free cells [perfused medium with ethylene glycol bis(2-aminoethyl ether)tetraacetic acid] long-term inward and outward currents through Ca channels consisted of two components: with and without time-dependent inactivation. The voltage dependence of the Ca channel activation ratio was found to be sigmoid-shaped, with about -140-mV activation threshold, reaching a plateau at V>50 mV.

View Article and Find Full Text PDF