The product of ozonolysis, glycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, [OTOA]), was incorporated into polylactic acid/polycaprolactone (PLA/PCL) blend films in the amount of 1, 5, 10, 20, 30 and 40% /. The morphological, mechanical, thermal and antibacterial properties of the biodegradable PLA/PCL films after the OTOA addition were studied. According to DSC and XRD data, the degree of crystallinity of the PLA/PCL + OTOA films showed a general decreasing trend with an increase in OTOA content.
View Article and Find Full Text PDFGlycero-(9,10-trioxolane)-trioleate (ozonide of oleic acid triglyceride, OTOA) was introduced into polylactic acid (PLA) films in amounts of 5, 10, 30, 50, and 70% /. The morphological, mechanical, thermal, and water absorption properties of PLA films after the OTOA addition were studied. The morphological analysis of the films showed that the addition of OTOA increased the diameter of PLA spherulites and, as a consequence, increased the proportion of amorphous regions in PLA films.
View Article and Find Full Text PDFBiocompatible glycero (9,10-trioxolane) trioleate (ozonide of oleic acid triglyceride, OTOA) was incorporated into polylactic acid (PLA) fibers by electrospinning and nonwoven PLA mats with 1%, 3% and 5% OTOA content. The morphological, mechanical, thermal and water sorption properties of electrospun PLA mats after the addition of OTOA were studied. A morphological analysis showed that the addition of OTOA increased the average fiber diameter and induced the formation of pores on the fiber surface, leading to an increase in the specific surface area for OTOA-modified PLA fibrous mats.
View Article and Find Full Text PDFCompositions of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB) thermoplastic polyesters originated from the nature raw have been obtained by blending under shear deformations and electrospinning methods in the form of films and nanofibers as well as unwoven nanofibrous materials, respectively. The degrees of crystallinity calculated on the base of melting enthalpies and thermal transition temperatures for glassy state, cold crystallization, and melting point for individual biopolymers and ternary polymer blends PLA-PHB- poly(ethyleneglycol) (PEG) have been evaluated. It has been shown that the mechanical properties of compositions depend on the presence of plasticizers PEG with different molar masses in interval of 400-1000.
View Article and Find Full Text PDFActually, in order to replace traditional fossil-based polymers, many efforts are devoted to the design and development of new and high-performance bioplastics materials. Poly(hydroxy alkanoates) (PHA) as well as polylactides are the main candidates as naturally derived polymers. The intention of the present study is to manufacture fully bio-based blends based on two polyesters: poly (3-hydroxybutyrate) (PHB) and polylactic acid (PLA) as real competitors that could be used to replace petrol polymers in packaging industry.
View Article and Find Full Text PDFThe academic exploration and technology design of active packaging are coherently supplying innovative approaches for enhancing the quality and safety of food, as well as prolonging their shelf-life. With the object of comparison between two barrier materials, such as stable petrochemical polyurethane (PU), (BASF), and biodegradable natural poly(3-hydroxybutyrate) (PHB), (Biomer Co., Krailling, Germany), the study of antibacterial agent release has been performed.
View Article and Find Full Text PDF