The current strategy for detecting evidence of ancient life on Mars-a primary goal of NASA's ongoing Mars 2020 mission-is based largely on knowledge of Precambrian life and of its preservation in Earth's early rock record. The fossil record of primitive microorganisms consists mainly of stromatolites and other microbially influenced sedimentary structures, which occasionally preserve microfossils or other geochemical traces of life. Raman spectroscopy is an invaluable tool for identifying such signs of life and is routinely performed on Precambrian microfossils to help establish their organic composition, degree of thermal maturity, and biogenicity.
View Article and Find Full Text PDFAnalyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δC compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δC values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.
View Article and Find Full Text PDFThe recent discovery of a deep-water sulfur-cycling microbial biota in the ∼ 2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼ 1.
View Article and Find Full Text PDFThe serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H.
View Article and Find Full Text PDFPremise Of The Study: Permineralization provides the most faithful known mode of three-dimensional preservation of the morphology and cellular anatomy of fossil plants. Standard optical microscopic documentation of such structures can provide only an approximation of their true three-dimensional form and is incapable of revealing fine-structural (<300 nm) details, deficiencies that can be addressed by the use of confocal laser scanning microscopy (CLSM).
Methods: To demonstrate the usefulness of CLSM in such studies, we compare confocal laser scanning micrographs and optical photomicrographs of the permineralized tissues of rhizomes and petioles of the Eocene fern Dennstaedtiopsis aerenchymata preserved in cherts of the Clarno Formation of Oregon, USA, and the Allenby Formation (Princeton chert) of British Columbia, Canada.
Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose.
View Article and Find Full Text PDFRaman spectroscopy was used to determine the mineralogical composition of the calcareous tubes of three species belonging to the family Cirratulidae. In all three cases, the tubes were found to be aragonitic, confirming previous inferences based on EDX and thin section studies, and corroborated by new EDX analyses revealing the presence of Sr but no Mg. Biomineralization in cirratulids is first recorded in the Oligocene epoch, at a time of aragonite seas.
View Article and Find Full Text PDFFor the foreseeable future, the search for evidence of past life in rocks acquired from other planets will be constrained by the amount of sample available and by the fidelity of preservation of any fossils present. What amount of rock is needed to establish the existence of past life? To address this question, we studied a minute amount of rock collected from cherty dolomites of the Proterozoic Buxa Formation in the metamorphically altered tectonically active northeastern Himalaya. In particular, we investigated 2 small petrographic thin sections-one from each of 2 bedded chert horizons exposed in the Ranjit River stratigraphic section northwest of Rishi, Sikkim, India-that together comprise an area of approximately 5 cm(2) (about the size of a US postage stamp) and have a total rock weight of approximately 0.
View Article and Find Full Text PDFThe Early Cambrian (approximately 540 million years old) Meishucun fossil assemblage of Ningqiang County (Shaanxi Province), China, contains the oldest complex skeletonized organisms known in the geological record. We here report the finding in this assemblage of an exquisitely preserved late-stage embryo of a ctenophore ("comb jelly"), its fine structure documented by confocal laser scanning microscopy and shown by Raman spectroscopy to be composed of carbonaceous kerogen permineralized in apatite. In its spheroidal morphology, the presence of eight comb rows and the absence of tentacles, this embryo resembles an adult ctenophore (Maotianoascus octonarius) known from the immediately younger Chengjiang fauna of Yunnan, China.
View Article and Find Full Text PDFRaman spectroscopy has long been used for the chemical analysis of organic matter, including natural products, using excitation wavelengths in the visible, infrared, or ultraviolet portions of the spectrum. The use of ultraviolet resonance Raman spectroscopy (UVRR) to study bulk samples of plant tissue has typically been carried out by rotating homogeneous macro-samples beneath the laser beam in order to minimize the amount of UV radiation impinging on any one spot, thereby avoiding its potentially damaging effects on the organic matter analyzed. This paper extends the use of UVRR to the study on a microscopic scale of individual plant cell walls by use of the controlled micro-displacement of a sample.
View Article and Find Full Text PDFA major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms.
View Article and Find Full Text PDFLaser-Raman imagery is a non-intrusive, non-destructive analytical technique, recently introduced to Precambrian paleobiology, that can be used to demonstrate a one-to-one spatial correlation between the optically discernible morphology and kerogenous composition of permineralized fossil microorganisms. Made possible by the submicron-scale resolution of the technique and its high sensitivity to the Raman signal of carbonaceous matter, such analyses can be used to determine the chemical-structural characteristics of organic-walled microfossils and associated sapropelic carbonaceous matter in acid-resistant residues and petrographic thin sections. Here we use this technique to analyze kerogenous microscopic fossils and associated carbonaceous sapropel permineralized in 22 unmetamorphosed or little-metamorphosed fine-grained chert units ranging from approximately 400 to approximately 2,100 Ma old.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in approximately 650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of approximately 200-nm-sized angular platelets of polycyclic aromatic kerogen.
View Article and Find Full Text PDFUnlike the familiar Phanerozoic history of life, evolution during the earlier and much longer Precambrian segment of geological time centred on prokaryotic microbes. Because such microorganisms are minute, are preserved incompletely in geological materials, and have simple morphologies that can be mimicked by nonbiological mineral microstructures, discriminating between true microbial fossils and microscopic pseudofossil 'lookalikes' can be difficult. Thus, valid identification of fossil microbes, which is essential to understanding the prokaryote-dominated, Precambrian 85% of life's history, can require more than traditional palaeontology that is focused on morphology.
View Article and Find Full Text PDF