Publications by authors named "Anatoli V Melechko"

Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil.

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth.

View Article and Find Full Text PDF

Weakly charged cationic nanoparticles cause structural changes including local denaturing and compaction to DNA under mild conditions. The charged ligands bind to the phosphate backbone of DNA and the uncharged ligands penetrate the helix and disrupt base pairing. Mobility shifts in electrophoresis, molecular dynamics, and UV-vis spectrophotometry give clues to the details of the interactions.

View Article and Find Full Text PDF
Article Synopsis
  • - Neural chips have been used for nearly 30 years to record and stimulate neural activity, providing important data for understanding and controlling neural functions.
  • - A new type of neural chip made from carbon nanofibers has been developed, featuring advanced electrodes that enhance sensitivity and resolution for better monitoring of brain activity.
  • - This innovative chip can monitor both electrical and chemical signals from individual neurons, offering promising applications for studying neuroplasticity and developing biocompatible neural interfaces.
View Article and Find Full Text PDF

A key factor to the implementation of devices with vertically aligned carbon nanofibers (VACNFs) is fundamental understanding of how to control fluctuations in the growth direction of the fibers. Here we demonstrate synthesis of VACNF on transparent and insulating substrates by continuous direct current (DC) plasma for realization of cellular interface suitable for transmission optical microscopy. To maintain continuous glow discharge above the substrate, a metal grid electrode layer (Cr) was deposited over silica with windows of exposed silica ranging in size from 200 μm to 1 mm.

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) were synthesized using ligand-stabilized Ni nanoparticle (NP) catalysts and plasma-enhanced chemical vapor deposition. Using chemically synthesized Ni NPs enables facile preparation of VACNF arrays with monodisperse diameters below the size limit of thin film lithography. During pregrowth heating, the ligands catalytically convert into graphitic shells that prevent the catalyst NPs from agglomerating and coalescing, resulting in a monodisperse VACNF size distribution.

View Article and Find Full Text PDF

We report a strategy for immobilizing dsDNA (double-stranded DNA) onto vertically aligned carbon nanofibers and subsequently releasing this dsDNA following penetration and residence of these high aspect ratio structures within cells. Gold-coated nanofiber arrays were modified with self-assembled monolayers (SAM) to which reporter dsDNA was covalently and end-specifically bound with or without a cleavable linker. The DNA-modified nanofiber arrays were then used to impale, and thereby transfect, Chinese hamster lung epithelial cells.

View Article and Find Full Text PDF

Nanoporous membranes are applicable to a variety of research fields due to their ability to selectively separate molecules with high efficiency. Of particular interest are methods for controlling membrane selectivity through externally applied stimuli and integrating such membrane structures within multiscale systems. Membranes comprised of deterministically grown, vertically aligned carbon nanofibers (VACNFs) are compatible with these needs.

View Article and Find Full Text PDF

RNA interference (RNAi) has become a powerful biological tool over the past decade. In this study, a tetracycline-inducible small hairpin RNA (shRNA) vector system was designed for silencing cyan fluorescent protein (CFP) expression and delivered alongside the yfp marker gene into Chinese hamster ovary cells using impalefection on spatially indexed vertically aligned carbon nanofiber arrays (VACNFs). The VACNF architecture provided simultaneous delivery of multiple genes, subsequent adherence and proliferation of interfaced cells, and repeated monitoring of single cells over time.

View Article and Find Full Text PDF

Vertically aligned carbon nanofiber (VACNF) electrode arrays were tested for their potential application in recording neuro-electrophysiological activity. We report, for the first time, stimulation and extracellular recording of spontaneous and evoked neuroelectrical activity in organotypic hippocampal slice cultures with ultramicroelectrode VACNF arrays. Because the electrodes are carbon-based, these arrays have potential advantages over metal electrodes and could enable a variety of future applications as precise, informative, and biocompatible neural interfaces.

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) with immobilized DNA have been developed as a novel tool for direct physical introduction and expression of exogenous genes in mammalian cells. Immobilization of DNA base amines to the carboxylic acids on nanofibers can influence the accessibility and transcriptional activity of the DNA template, making it necessary to determine the number of accessible gene copies on nanofiber arrays. Polymerase chain reaction (PCR) and in vitro transcription (IVT) were used to investigate the transcriptional accessibility of DNA tethered to VACNFs by correlating the yields of both IVT and PCR to that of non-tethered, free DNA.

View Article and Find Full Text PDF

Reversible electrostatically induced wetting (electrowetting) of vertically aligned superhydrophobic carbon nanofibers has been investigated. Carbon nanofibers on a 5 x 5 microm pitch were grown on Si substrates, electrically insulated with a conformal dielectric, and hydrophobized with fluoropolymer. This nanostructured scaffold exhibited superhydrophobic behavior for saline (theta approximately 160 degrees).

View Article and Find Full Text PDF

Carbon nanofiber electrode architectures are used to provide for long-term, neuroelectroanalytical measurements of the dynamic processes of intercellular communication between excitable cells. Individually addressed, vertically aligned carbon nanofibers are incorporated into multielement electrode arrays upon which excitable cell matrixes of both neuronal-like derived cell lines (rat pheochromocytoma, PC-12) and primary cells (dissociated cells from embryonic rat hippocampus) are cultured over extended periods (days to weeks). Electrode arrays are characterized with respect to their response to easily oxidized neurotransmitters, including dopamine, norepinephrine, and 5-hydroxytyramide.

View Article and Find Full Text PDF

Arrays of vertically aligned carbon nanofibers (VACNFs) provide structures that are well suited for the direct integration and manipulation of molecular-scale phenomena within intact, live cells. VACNFs are fabricated via a combination of microfabrication techniques and catalytic plasma-enhanced chemical vapor deposition. In this chapter, we discuss the synthesis of VACNFs and detail the methods for introducing these arrays into the intracellular domain of mammalian cells for the purpose of delivering large macromolecules, specifically plasmid DNA, on a massively parallel basis.

View Article and Find Full Text PDF

Natural systems excel in directing the synthesis of inorganic materials for various functional purposes. One of the best-studied systems is silica synthesis, as occurs in diatoms and marine sponges. Various biological and synthetic polymers have been shown to template and catalyze silica formation from silicic acid precursors.

View Article and Find Full Text PDF