Publications by authors named "Anatoli Danilov"

In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties.

View Article and Find Full Text PDF

Porous nickel-titanium (NiTi) alloy is a promising new material for a bone graft substitute with good strength properties and an elastic modulus closer to that of bone than any other metallic material. The purpose of this study was to evaluate the effect of porosity on the osteointegration of NiTi implants in rat bone. The porosities (average void volume) and the mean pore size (MPS) were 66.

View Article and Find Full Text PDF

In this study we compared the effect of structural stresses and surface roughness on biocompatibility of NiTi- and Ti-alloy for ROS-17/2.8 osteoblastic cells. We suggest here that cell viability and cell attachment are linear functions of internal (structural) stress and subgrain size of the implant alloy.

View Article and Find Full Text PDF

Nitinol (NiTi) shape memory metal alloy makes it possible to prepare functional implants that apply a continuous bending force to the bone. The purpose of this study was to find out if bone modeling can be controlled with a functional intramedullary NiTi nail. Pre-shaped intramedullary NiTi nails (length 26 mm, thickness 1.

View Article and Find Full Text PDF