A method for the grafting of unsymmetrical ABC-type 5,15-bis(4-butoxyphenyl)-10-(4-carboxyphenyl)-20-(phenanthrenoimidazolyl)-porphyrin onto the surface of nanostructured aluminum oxyhydroxide modified with a single SiO layer (NAOM) was successfully developed. A straightforward procedure towards surface modification of NAOM allowed us to prepare a new porphyrin-containing hybrid material. The obtained 3D heterostructure was extensively characterized using XPS, TEM and diffuse reflectance spectroscopy.
View Article and Find Full Text PDFBulk nanomaterials with an open porosity offer exciting prospects for creating new functional materials for various applications in photonics, IR-THz optics, metamaterials, heterogeneous photocatalysis, monitoring and cleaning toxic impurities in the environment. However, their availability is limited by the complexity of controlling the process of synthesis of bulk 3D nanostructures with desired physicochemical and functional properties. In this paper, we performed a detailed analysis of influence of a silica monolayer chemically deposited on the surface of a monolithic ultraporous nanostructure, consisting of a 3D nanofibril network of aluminum oxyhydroxide, on the evolution of structure and morphology, chemical composition and phase transformations after heat treatment in the temperature range of 20-1700 °C.
View Article and Find Full Text PDF