Publications by authors named "Anatol Bragin"

Background: Alzheimer's disease (AD), the most prevalent form of dementia, is a leading neurodegenerative disorder currently affecting approximately 55 million individuals globally, a number projected to escalate to 139 million by 2050. Despite extensive research spanning several decades, the cure for AD remains at a developing stage. The only existing therapeutic options are limited to symptom management, and are often accompanied by adverse side effects.

View Article and Find Full Text PDF
Article Synopsis
  • In medication-resistant epilepsy, surgery aims to achieve seizure freedom while minimizing harm through careful planning based on electroclinical data and neuroimaging techniques.
  • A support vector machine (SVM) was utilized to analyze fast ripple (FR) metrics from patients, achieving a prediction accuracy of 78% for effective surgical resections.
  • Simulations indicated that larger virtual resections often led to improved seizure freedom outcomes, suggesting that targeting high-frequency oscillations may enhance surgical success rates.
View Article and Find Full Text PDF

Objective: Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control.

View Article and Find Full Text PDF

In medication-resistant epilepsy, the goal of epilepsy surgery is to make a patient seizure free with a resection/ablation that is as small as possible to minimize morbidity. The standard of care in planning the margins of epilepsy surgery involves electroclinical delineation of the seizure onset zone (SOZ) and incorporation of neuroimaging findings from MRI, PET, SPECT, and MEG modalities. Resecting cortical tissue generating high-frequency oscillations (HFOs) has been investigated as a more efficacious alternative to targeting the SOZ.

View Article and Find Full Text PDF

Objective: To confirm and investigate why pathological high-frequency oscillations (pHFOs), including ripples (80-200 Hz) and fast ripples (200-600 Hz), are generated during the UP-DOWN transition of the slow wave and if information transmission mediated by ripple temporal coupling is disrupted in the seizure-onset zone (SOZ).

Methods: We isolated 217 total units from 175.95 intracranial electroencephalography (iEEG) contact-hours of synchronized macro- and microelectrode recordings from 6 patients.

View Article and Find Full Text PDF

Objective: To confirm and investigate why pathological HFOs (pHFOs), including Ripples [80-200 Hz] and fast ripples [200-600 Hz], are generated during the UP-DOWN transition of the slow wave and if pHFOs interfere with information transmission.

Methods: We isolated 217 total units from 175.95 iEEG contact-hours of synchronized macro- and microelectrode recordings from 6 patients.

View Article and Find Full Text PDF

Objective: To test the feasibility and reliability of intracranial electrophysiological recordings in an acute status epilepticus model on laboratory swine.

Method: Intrahippocampal injection of kainic acid (KA) was performed on 17 male Bama pigs () weighing between 25 and 35 kg. Two stereoelectroencephalography (SEEG) electrodes with a total of 16 channels were implanted bilaterally along the sensorimotor cortex to the hippocampus.

View Article and Find Full Text PDF

Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist.

View Article and Find Full Text PDF

Objective: Aiming to improve the feasibility and reliability of using high-frequency oscillations (HFOs) for translational studies of epilepsy, we present a pipeline with features specifically designed to reject false positives for HFOs to improve the automatic HFO detector.

Methods: We presented an integrated, multi-layered procedure capable of automatically rejecting HFOs from a variety of common false positives, such as motion, background signals, and sharp transients. This method utilizes a time-frequency contour approach that embeds three different layers including peak constraints, power thresholds, and morphological identification to discard false positives.

View Article and Find Full Text PDF

The objective of this study was to develop a computational algorithm capable of locating artifacts and identifying epileptic seizures, which specifically implementing in clinical stereoelectroencephalography (SEEG) recordings. Based on the nonstationary nature and broadband features of SEEG signals, a comprehensive strategy combined with the complex wavelet transform (CWT) and multi-layer thresholding method was implemented for both noise reduction and seizure detection. The artifacts removal pipeline integrated edge artifact removal, discrete spectrum analysis, and peak density evaluation.

View Article and Find Full Text PDF

We studied the role of temporal and spatial changes in high-frequency oscillation (HFO, 80-500 Hz) generation in epileptogenesis following traumatic brain injury (TBI). Experiments were conducted on adult male Sprague Dawley rats. For the TBI group, fluid percussion injury (FPI) on the left sensorimotor area was performed to induce posttraumatic epileptogenesis.

View Article and Find Full Text PDF

Objective: The goal of the present study was to determine whether spike and wave discharges (SWDs) and SWDs with superimposed fast ripples (SWDFRs) could be biomarkers of posttraumatic epileptogenesis.

Methods: Fluid percussion injury was conducted on 13-14-week old male Sprague Dawley rats. Immediately after traumatic brain injury (TBI), they were implanted with microelectrodes in the neocortex, hippocampus, and striatum bilaterally.

View Article and Find Full Text PDF

Objective: The current study aims to investigate functional brain network representations during the early period of epileptogenesis.

Methods: Eighteen rats with the intrahippocampal kainate model of mesial temporal lobe epilepsy were used for this experiment. Functional magnetic resonance imaging (fMRI) measurements were made 1 week after status epilepticus, followed by 2-4-month electrophysiological and video monitoring.

View Article and Find Full Text PDF

Objective: To investigate the diagnostic utility of high frequency oscillations (HFOs) via scalp electroencephalogram (EEG) in infantile spasms.

Methods: We retrospectively analyzed interictal slow-wave sleep EEGs sampled at 2,000 Hz recorded from 30 consecutive patients who were suspected of having infantile spasms. We measured the rate of HFOs (80-500 Hz) and the strength of the cross-frequency coupling between HFOs and slow-wave activity (SWA) at 3-4 Hz and 0.

View Article and Find Full Text PDF

Ripple oscillations (80-200 Hz) in the normal hippocampus are involved in memory consolidation during rest and sleep. In the epileptic brain, increased ripple and fast ripple (200-600 Hz) rates serve as a biomarker of epileptogenic brain. We report that both ripples and fast ripples exhibit a preferred phase angle of coupling with the trough-peak (or On-Off) state transition of the sleep slow wave in the hippocampal seizure onset zone (SOZ).

View Article and Find Full Text PDF

Pathological high frequency oscillations (HFOs) are putative neurophysiological biomarkers of epileptogenic brain tissue. Utilizing HFOs for epilepsy surgery planning offers the promise of improved seizure outcomes for patients with medically refractory epilepsy. This review discusses possible machine learning strategies that can be applied to HFO biomarkers to better identify epileptogenic regions.

View Article and Find Full Text PDF

Epileptic seizures result from a variety of pathophysiological processes, evidenced by different electrographic ictal onset patterns, as seen on direct brain recordings. The two most common electrographic patterns of focal ictal onset in patients are hypersynchronous (HYP) and low-voltage fast (LVF). Whereas LVF ictal onsets were believed to result from disinhibition; based on similarities with absence seizures, focal HYP ictal onsets were believed to result from increased synchronizing inhibition.

View Article and Find Full Text PDF

There are no reliable nonictal biomarkers for epilepsy, electroencephalography (EEG) or otherwise, but efforts to identify biomarkers that would predict the development of epilepsy after a potential epileptogenic insult, diagnose the existence of epilepsy, or assess the effects of antiseizure or antiepileptogenic interventions are relying heavily on electrophysiology. The most promising EEG biomarkers to date are pathologic high-frequency oscillations (pHFOs), brief EEG events in the range of 100 to 600 Hz, which are believed to reflect summated action potentials from synchronously bursting neurons. Studies of patients with epilepsy, and experimental animal models, have been based primarily on direct brain recording, which makes pHFOs potentially useful for localizing the epileptogenic zone for surgical resection, but application for other diagnostic and therapeutic purposes is limited.

View Article and Find Full Text PDF

Objective: Intracellular recordings from cells in entorhinal cortex tissue slices show that low-voltage fast (LVF) onset seizures are generated by inhibitory events. Here, we determined whether increased firing of interneurons occurs at the onset of spontaneous mesial-temporal LVF seizures recorded in patients.

Methods: The seizure onset zone (SOZ) was identified using visual inspection of the intracranial electroencephalogram.

View Article and Find Full Text PDF

Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis.

View Article and Find Full Text PDF

Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF

The current study aimed to investigate the spatial and temporal patterns of high-frequency oscillations (HFOs) in the intra-/extrahippocampal areas during epileptogenesis. Local field potentials were bilaterally recorded from hippocampus (CA1), thalamus, motor cortex, and prefrontal cortex in 13 rats before and after intrahippocampal kainic acid (KA) lesions. HFOs in the ripple (100-200 Hz) and fast ripple (250-500 Hz) ranges were detected and their rates were computed during different time periods (1-5 weeks) after KA-induced status epilepticus (SE).

View Article and Find Full Text PDF

Currently, an epileptic seizure is considered to involve a temporary network that exists for a finite period of time. Formation of this network evolves through spread of epileptiform activity from a seizure onset zone (SOZ). Propagation of seizures evoked by kainic acid injection in hippocampus to different brain areas was analyzed at macro- and micro-intervals.

View Article and Find Full Text PDF

Objective: To develop a reliable software method using a topographic analysis of time-frequency plots to distinguish ripple (80-200 Hz) oscillations that are often associated with EEG sharp waves or spikes (RonS) from sinusoid-like waveforms that appear as ripples but correspond with digital filtering of sharp transients contained in the wide bandwidth EEG.

Methods: A custom algorithm distinguished true from false ripples in one second intracranial EEG (iEEG) recordings using wavelet convolution, identifying contours of isopower, and categorizing these contours into sets of open or closed loop groups. The spectral and temporal features of candidate groups were used to classify the ripple, and determine its duration, frequency, and power.

View Article and Find Full Text PDF