Quercetin-chitosan (QCS) polysaccharide was synthesized via non-radical reaction using L-valine-quercetin as the precursor. QCS was systematically characterized and demonstrated amphiphilic properties with self-assembling ability. In-vitro activity studies confirmed that quercetin grafting does not diminish but rather increases antimicrobial activity of the original chitosan (CS) and provided the modified polysaccharide with antioxidative properties.
View Article and Find Full Text PDFSustainable antibacterial-antioxidant films were prepared using in situ graftings of silica nanoparticle (SNP) precursors with covalently attached bioactive agents benzoic acid (ba) or curcumin (cur) on polyvinyl alcohol (PVA). The modified PVA-SNP, PVA-SNP-ba and PVA-SNP-cur films were characterized using spectroscopic, physicochemical and microscopic methods. The prepared films showed excellent antibacterial and antioxidant activity, and increased hydrophobicity providing protection from undesired moisture.
View Article and Find Full Text PDFA nondestructive one-step approach was applied for grafting biocide-free monodispersed silica nanoparticles (SNPs) with a diameter of 30 ± 10 nm on polystyrene, polyethylene, and polyvinyl chloride surfaces. The prepared surfaces were comprehensively characterized using spectroscopic (Fourier transform infrared attenuated total reflection, ultraviolet-visible, and X-ray photoelectron spectroscopy) and microscopic (high-resolution scanning electron microscopy and atomic force microscopy) methods. The modified polymers were found to maintain their original mechanical and physical properties, while their nanoroughness on the other hand had risen by 1.
View Article and Find Full Text PDF