Publications by authors named "Anat Melamed"

Article Synopsis
  • - A typical individual infected with HTLV-1 has over 10,000 different T cell clones, each containing a unique HTLV-1 provirus affecting host genome transcription and chromatin structure.
  • - Researchers investigated whether the negative effects on host transcription and chromatin loops were due to the presence of the provirus or its activity by analyzing T cells based on proviral expression.
  • - They discovered that while proviral transcription leads to abnormal transcription and splicing in adjacent genes, it actually suppresses the formation of abnormal chromatin loops, and reducing this transcription can restore normal chromatin interactions.
View Article and Find Full Text PDF

The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic functions in the host cell affecting cell-cycle regulation, DNA damage response pathways and apoptosis. These actions of Tax have been implicated in the persistence and pathogenesis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional bursts of the proviral plus-strand, but the effects of the burst on host transcription are not fully understood.

View Article and Find Full Text PDF

The human retroviruses HTLV-1 (human T cell leukemia virus type 1) and HIV-1 persist in vivo as a reservoir of latently infected T cell clones. It is poorly understood what determines which clones survive in the reservoir. We compared >160,000 HTLV-1 integration sites (>40,000 HIV-1 sites) from T cells isolated ex vivo from naturally infected individuals with >230,000 HTLV-1 integration sites (>65,000 HIV-1 sites) from in vitro infection to identify genomic features that determine selective clonal survival.

View Article and Find Full Text PDF
Article Synopsis
  • Coinfection with HIV-1 and HTLV-1 complicates AIDS diagnosis and increases HTLV-1-related health issues, prompting research into how these infections affect each other.
  • The study analyzed DNA from individuals infected with either virus alone or both, measuring viral loads and genetic characteristics using advanced PCR techniques.
  • Results showed higher viral loads and increased clonal expansion in coinfected individuals, with specific changes in the locations of HIV-1 integration sites, suggesting a potential increase in disease risk associated with this coinfection.
View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes.

View Article and Find Full Text PDF
Article Synopsis
  • * Research tracked the evolution of malignant HTLV-1-infected cells in individuals up to 10 years before they were diagnosed, identifying early signs of cancer through specific mutations that gradually increased over time.
  • * The findings suggest that detecting these oncogenic mutations early could lead to timely interventions, potentially preventing the progression to ATL.
View Article and Find Full Text PDF

The prevalence of human T-cell lymphotropic virus type 1 (HTLV-1) and hepatitis B virus (HBV) coinfection is high in certain Indigenous Australian populations, but its impact on HTLV-1 has not been described. We compared 2 groups of Indigenous adults infected with HTLV-1, either alone or coinfected with HBV. The 2 groups had a similar HTLV-1 proviral load, but there was a significant increase in clonal expansion of HTLV-1-infected lymphocytes in coinfected asymptomatic individuals.

View Article and Find Full Text PDF

Chromatin looping controls gene expression by regulating promoter-enhancer contacts, the spread of epigenetic modifications, and the segregation of the genome into transcriptionally active and inactive compartments. We studied the impact on the structure and expression of host chromatin by the human retrovirus HTLV-1. We show that HTLV-1 disrupts host chromatin structure by forming loops between the provirus and the host genome; certain loops depend on the critical chromatin architectural protein CTCF, which we recently discovered binds to the HTLV-1 provirus.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells.

View Article and Find Full Text PDF

Globally, > 5-10 million people are estimated to be infected with Human T-lymphotropic virus type 1 (HTLV-1), of whom ~ 5% develop adult T-cell leukemia/lymphoma (ATL). Despite advances in chemotherapy, overall survival (OS) has not improved in the 35 years since HTLV-1 was first described. In Europe/USA, combination treatment with zidovudine and interferon-α (ZDV/IFN-α) has substantially changed the management of patients with the leukemic subtypes of ATL (acute or unfavorable chronic ATL) and is under clinical trial evaluation in Japan.

View Article and Find Full Text PDF

Human T-lymphotropic virus type-1 (HTLV-1) is the causative agent of adult T-cell leukaemia/lymphoma (ATL), an aggressive CD4+ T-cell malignancy. The mechanisms of leukaemogenesis in ATL are incompletely understood. Insertional mutagenesis has not previously been thought to contribute to the pathogenesis of ATL.

View Article and Find Full Text PDF

Combination anti-retroviral therapy (cART) has drastically improved the clinical outcome of HIV-1 infection. Nonetheless, despite effective cART, HIV-1 persists indefinitely in infected individuals. Clonal expansion of HIV-1-infected cells in peripheral blood has been reported recently.

View Article and Find Full Text PDF

HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity.

View Article and Find Full Text PDF

We describe here a method to identify the position of retroviral insertion sites and simultaneously to quantify the absolute abundance of each clone, i.e., the number of cells having the provirus inserted at a given place in the host genome.

View Article and Find Full Text PDF

HTLV-1 causes Adult T cell Leukemia/Lymphoma (ATLL) in humans. We describe an ATL-like disease in a 9 year-old female baboon naturally infected with STLV-1 (the simian counterpart of HTLV-1), with a lymphocyte count over 10/L, lymphocytes with abnormal nuclear morphology, and pulmonary and skin lesions. The animal was treated with a combination of AZT and alpha interferon.

View Article and Find Full Text PDF

There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone.

View Article and Find Full Text PDF

Many DNA-binding factors, such as transcription factors, form oligomeric complexes with structural symmetry that bind to palindromic DNA sequences. Palindromic consensus nucleotide sequences are also found at the genomic integration sites of retroviruses and other transposable elements, and it has been suggested that this palindromic consensus arises as a consequence of the structural symmetry in the integrase complex. However, we show here that the palindromic consensus sequence is not present in individual integration sites of human T-cell lymphotropic virus type 1 (HTLV-1) and human immunodeficiency virus type 1 (HIV-1), but arises in the population average as a consequence of the existence of a non-palindromic nucleotide motif that occurs in approximately equal proportions on the plus strand and the minus strand of the host genome.

View Article and Find Full Text PDF

Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 10(4) and 10(5) clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance.

View Article and Find Full Text PDF

Background: Human T-lymphotropic virus type 1 (HTLV-1) infects an estimated 10 million persons globally with transmission resulting in lifelong infection. Disease, linked to high proviral load, occurs in a minority. In established infection HTLV-1 replicates through infectious spread and clonal expansion of infected lymphocytes.

View Article and Find Full Text PDF

Background: Human T-lymphotropic Virus Type I (HTLV-1) is a retrovirus that persistently infects 5-10 million individuals worldwide and causes disabling or fatal inflammatory and malignant diseases. The majority of the HTLV-1 proviral load is found in CD4(+) T cells, and the phenotype of adult T cell leukemia (ATL) is typically CD4(+). HTLV-1 also infects CD8(+) cells in vivo, but the relative abundance and clonal composition of the two infected subpopulations have not been studied.

View Article and Find Full Text PDF

Background: HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers (ACs) have a more effective CD8 + T cell response, including a higher frequency of HLA class I alleles able to present peptides from a regulatory protein of HTLV-1, HBZ.

View Article and Find Full Text PDF

Estimation of immunological and microbiological diversity is vital to our understanding of infection and the immune response. For instance, what is the diversity of the T cell repertoire? These questions are partially addressed by high-throughput sequencing techniques that enable identification of immunological and microbiological "species" in a sample. Estimators of the number of unseen species are needed to estimate population diversity from sample diversity.

View Article and Find Full Text PDF