Suppression of apoptosis is a key Hallmark of cancer cells, and reactivation of apoptosis is a major avenue for cancer therapy. We reveal an interaction between the two anti-apoptotic proteins iASPP and NAF-1, which are overexpressed in many types of cancer cells and tumors. iASPP is an inhibitory member of the ASPP protein family, whereas NAF-1 belongs to the NEET 2Fe-2S protein family.
View Article and Find Full Text PDFWe present a new approach for the covalent inhibition of HIV-1 integrase (IN) by an LEDGF/p75-derived peptide modified with an N-terminal succinimide group. The covalent inhibition is mediated by direct binding of the succinimide to the amine group of a lysine residue in IN. The peptide serves as a specific recognition sequence for the target protein, while the succinimide serves as the binding moiety.
View Article and Find Full Text PDFWe present a possible molecular basis for the opposite activity of two homologues proteins that bind similar ligands and show that this is achieved by fine-tuning of the interaction interface. The highly homologous ASPP proteins have opposite roles in regulating apoptosis: ASPP2 induces apoptosis while iASPP inhibits it. The ASPP proteins are regulated by an autoinhibitory interaction between their Ank-SH3 and Pro domains.
View Article and Find Full Text PDFThe leading risk factor for gastric cancer in humans is infection by Helicobacter pylori strains that express and translocate the oncoprotein CagA into host epithelial cells. Once inside host cells, CagA interacts with ASPP2, which specifically stimulates p53-mediated apoptosis and reverses its pro-apoptotic function to promote ASPP2-dependent degradation of p53. The X-ray crystal structure of a complex between the N-terminal domain of CagA and a 56-residue fragment of ASPP2, of which 22 residues were resolved, was recently described.
View Article and Find Full Text PDFProtein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level.
View Article and Find Full Text PDFCagA is a virulence factor that Helicobacter pylori inject into gastric epithelial cells through a type IV secretion system where it can cause gastric adenocarcinoma. Translocation is dependent on the presence of secretion signals found in both the N- and C-terminal domains of CagA and an interaction with the accessory protein CagF. However, the molecular basis of this essential protein-protein interaction is not fully understood.
View Article and Find Full Text PDF