Publications by authors named "Anat Berliner"

Fluorine atoms play an important role in all branches of chemistry and accordingly, it is very important to study their unique and varied effects systematically, in particular, the structure-physicochemical properties relationship. The present study describes exceptional physicochemical effects resulting from a H/F exchange at the methylene bridge of gem-difunctional compounds. The Δlog P values, that is, the change in lipophilicity, observed for the CH /CF replacement in various α,α-phenoxy- and thiophenoxy-esters/amides, diketones, benzodioxoles and more, fall in the range of 0.

View Article and Find Full Text PDF

Modulation of the H-bond basicity (p) of various functional groups (FGs) by attaching fluorine functions and its impact on lipophilicity and bioisosterism considerations are described. In general, H/F replacement at the α-position to H-bond acceptors leads to a decrease of the p value, resulting, in many cases, in a dramatic increase in the compounds' lipophilicity (log ). In the case of α-CFH, we found that these properties may also be affected by intramolecular H-bonds between CFH and the FG.

View Article and Find Full Text PDF

The effects of the CFH moiety on H-bond (HB) acidity and lipophilicity of various compounds, when attached directly to an aromatic ring or to other functions like alkyls, ethers/thioethers, or electron-withdrawing groups, are discussed. It was found that the CFH group acts as a HB donor with a strong dependence on the attached functional group ( A = 0.035-0.

View Article and Find Full Text PDF

There is a growing interest in organic compounds containing the difluoromethyl group, as it is considered a lipophilic hydrogen bond donor that may act as a bioisostere of hydroxyl, thiol, or amine groups. A series of difluoromethyl anisoles and thioanisoles was prepared and their druglike properties, hydrogen bonding, and lipophilicity were studied. The hydrogen bond acidity parameters A (0.

View Article and Find Full Text PDF