Fluorescence correlation spectroscopy and time-dependent fluorescence Stokes shift have been employed to elucidate dynamics in different time scales, ranging from picoseconds to nanoseconds, for human serum albumin, in its native and cationized forms as well as in the self-assembled complex of the cationized protein with the polymer surfactant (PS) glycolic acid ethoxylate lauryl ether. The effect of crowding in this complex, especially in the waterless condition, is of prime importance in this context. Excellent correlation of the dynamics with the structures, obtained by circular dichroism and Fourier transform infrared spectroscopy, has been observed.
View Article and Find Full Text PDFWe measure by experiment and particle-based simulation the rheology of concentrated, non-Brownian droplet emulsions functionalized with surface-bound single-stranded (ss), "sticky," DNA. In the absence of ssDNA, the emulsion viscosity increases with the dispersed phase volume fraction ϕ, before passing through a liquid-solid transition at a critical ϕ_{c} related to random close packing. Introducing ssDNA leads to a liquid-solid transition at ϕ<ϕ_{c}, the onset being set by the droplet valency N and the ssDNA concentration (or simulated binding strength ε).
View Article and Find Full Text PDFViscous, non-aqueous liquid comprising stoichiometric conjugates of polymer surfactant-bovine serum albumin (PSpBSA) is used as a host matrix for the dispersion of chemically distinct hydrophilic dyes. Using a combination of bright field polarized optical microscopy and fluorescence spectroscopy, we investigate the dispersion of dry and powdered cationic (Rhodamine 6G; Rh6G) and anionic (Fluorescein; FL) dyes in the PSpBSA liquid at room temperature. As the dyes disperse and dissolve in the PSpBSA liquid, it results in a pronounced increase in emission intensity of the former.
View Article and Find Full Text PDFA highly stable, spontaneous, and reversible α-helical-structure formation in recombinant and chemically modified α-synuclein protein is demonstrated for the first time in a water-less (1.5 % w/w H O) polymer surfactant environment. Using a combination of circular dichroism and ATR-FTIR spectroscopy, we show that whilst native α-synuclein in aqueous solution shows a predominant unordered conformation (≈64 %), mixing with polyethylene glycol based anionic polymer surfactant (PS) and removing water reveals a 25 % unordered, 25 % α-helical, and 27 % β-sheet structure.
View Article and Find Full Text PDFSolvents, particularly those having low volatility, are of great interest for the biocatalytic synthesis of utility chemicals and fuels. We show novel and universal solvent-like properties of a neat and water-less polymer surfactant-bovine serum albumin (BSA) conjugated material (WL-PS pBSA). This highly viscous, nonvolatile material behaves as a liquid above its solid-liquid transition temperature (∼25-27 °C) and can be used as a solvent for variety of completely dry solutes of different sizes and surface chemistries.
View Article and Find Full Text PDF