Publications by authors named "Anastasiya Yermakova"

locus polymorphisms have been associated with several autoimmune diseases. We overexpressed in YTS natural killer (NK) cells and observed reduced NK cell cytotoxicity and IFN-γ release, delayed dendritic cell (DC) maturation, decreased conjugate formation, cell-surface receptor downregulation and increased autophagy. In contrast, siRNA mediated knockdown resulted in increased NK cell cytotoxicity, reversal of receptor expression and disrupted mitophagy.

View Article and Find Full Text PDF

Fascinating earlier evidence suggests an intrinsic capacity of human natural killer (NK) cells to acquire adaptive immune features in the context of cytomegalovirus (CMV) infection or pro-inflammatory cytokine stimulation. Since the role of memory NK cells in cancer has so far remained elusive and adoptive NK cell transfer in relapsing pediatric acute B cell precursor leukemia (BCP-ALL) patients awaits improvement, we asked the question whether tumor-priming could promote the generation of memory NK cells with enhanced graft-vs.-leukemia (GvL) reactivity.

View Article and Find Full Text PDF

Ricin is a member of the A-B family of bacterial and plant toxins that exploit retrograde trafficking to the Golgi apparatus and endoplasmic reticulum (ER) as a means to deliver their cytotoxic enzymatic subunits into the cytoplasm of mammalian cells. In this study we demonstrate that R70 and SyH7, two well-characterized monoclonal antibodies (mAbs) directed against distinct epitopes on the surface of ricin's enzymatic subunit (RTA), interfere with toxin transport from the plasma membrane to the trans Golgi network. Toxin-mAb complexes formed on the cell surface delayed ricin's egress from EEA-1(+) and Rab7(+) vesicles and enhanced toxin accumulation in LAMP-1(+) vesicles, suggesting the complexes were destined for degradation in lysosomes.

View Article and Find Full Text PDF

Ricin is a member of the ubiquitous family of plant and bacterial AB toxins that gain entry into the cytosol of host cells through receptor-mediated endocytosis and retrograde traffic through the trans-Golgi network (TGN) and endoplasmic reticulum (ER). While a few ricin toxin-specific neutralizing monoclonal antibodies (MAbs) have been identified, the mechanisms by which these antibodies prevent toxin-induced cell death are largely unknown. Using immunofluorescence confocal microscopy and a TGN-specific sulfation assay, we demonstrate that 24B11, a MAb against ricin's binding subunit (RTB), associates with ricin in solution or when prebound to cell surfaces and then markedly enhances toxin uptake into host cells.

View Article and Find Full Text PDF

SylH3 and 24B11 are murine monoclonal antibodies directed against different epitopes on ricin toxin's binding (RTB) subunit that have been shown to passively protect mice against ricin challenge. Here we report that Fab fragments of SylH3 and 24B11 neutralize ricin in a cell based assay, and in a mouse challenge model as effectively as their respective full length parental IgGs. These data demonstrate that immunity to ricin can occur independent of Fc-mediated clearance.

View Article and Find Full Text PDF

Recombineering is a widely-used approach to delete genes, introduce insertions and point mutations, and introduce epitope tags into bacterial chromosomes. Many recombineering methods have been described, for a wide range of bacterial species. These methods are often limited by (i) low efficiency, and/or (ii) introduction of "scar" DNA into the chromosome.

View Article and Find Full Text PDF

The B subunit (RTB) of ricin toxin is a galactose (Gal)-/N-acetylgalactosamine (GalNac)-specific lectin that mediates attachment, entry, and intracellular trafficking of ricin in host cells. Structurally, RTB consists of two globular domains with identical folding topologies. Domains 1 and 2 are each comprised of three homologous sub-domains (α, β, γ) that likely arose by gene duplication from a primordial carbohydrate recognition domain (CRD), although only sub-domains 1α and 2γ retain functional lectin activity.

View Article and Find Full Text PDF

Ricin toxin is an extraordinarily potent inducer of cell death and inflammation. Ricin is also a potent provocateur of the humoral immune system, eliciting a mixture of neutralizing, non-neutralizing and even toxin-enhancing antibodies. The characterization of dozens of monoclonal antibodies (mAbs) against the toxin's enzymatic (RTA) and binding (RTB) subunits has begun to reveal fundamental insights into the underlying mechanisms by which antibodies neutralize (or fail to neutralize) ricin in systemic and mucosal compartments.

View Article and Find Full Text PDF

The B subunit (RTB) of ricin toxin is a galactose-/N-acetyl galactosamine-specific lectin that promotes attachment and entry of ricin into host cells. RTB is also the archetype of the so-called R-type lectin family, whose members include haemagglutinins of botulinum neurotoxin (BoNT) progenitor toxins, as well as the binding subunits of cytolethal distending toxins. Although RTB is an appealing subunit vaccine candidate, as well as a potential target for immunotherapeutics, the degree to which RTB immunization elicits protective antibodies against ricin toxin remains unresolved.

View Article and Find Full Text PDF

The potential for genetic modification of biological warfare agents makes rapid identification of antibiotic resistant strains critical for the implementation of suitable infection control measures. The fluorinated quinolone, ciprofloxacin, is an antibiotic effective for treating bacterial infections by inhibiting the enzyme activity of the DNA type II topoisomerases DNA gyrase and topoisomerase IV. The genes that encode the subunits of DNA gyrase (gyrA and gyrB) and topo IV (par C and parE) contain hotspots within an area known as the quinolone resistance-determining region (QRDR).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session766gg3s6d2n4q5jj1qtf8etjetg76b06): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once