Spontaneous and induced mitotic recombinations are driven by lesions such as single-strand nicks and gaps and double-strand breaks in the genome. For regions of the genome that are not repetitive, spontaneous recombination rates are too low to be detected by simple screening and require reporters where a recombination product can be selected. This chapter describes commonly used types of reporters where a gene is duplicated as direct repeats and both copies are mutated with different mutations, rendering the cell defective for the gene and auxotrophic for the gene product.
View Article and Find Full Text PDFThe RNase H2 complex is a conserved heterotrimeric enzyme that degrades RNA:DNA hybrids and promotes excision of rNMPs misincorporated during DNA replication. Failure to remove ribonucleotides from DNA leads to genomic instability in yeast and humans. The monogenic Aicardi-Goutières syndrome (AGS) results from mutation in one of several genes, among which are those encoding the RNase H2 subunits.
View Article and Find Full Text PDFRibonucleotides can become embedded in DNA from insertion by DNA polymerases, failure to remove Okazaki fragment primers, R-loops that can prime replication, and RNA/cDNA-mediated recombination. RNA:DNA hybrids are removed by RNase H enzymes. Single rNMPs in DNA are removed by RNase H2 and if they remain on the leading strand, can lead to mutagenesis in a Top1-dependent pathway.
View Article and Find Full Text PDFThe replicative DNA polymerases insert ribonucleotides into DNA at a frequency of approximately 1/6500 nucleotides replicated. The rNMP residues make the DNA backbone more susceptible to hydrolysis and can also distort the helix, impeding the transcription and replication machineries. rNMPs in DNA are efficiently removed by RNaseH2 by a process called ribonucleotides excision repair (RER).
View Article and Find Full Text PDFThe Saccharomyces cerevisiae Swi2-like factors Rad54 and Rdh54 play multifaceted roles in homologous recombination via their DNA translocase activity. Aside from promoting Rad51-mediated DNA strand invasion of a partner chromatid, Rad54 and Rdh54 can remove Rad51 from duplex DNA for intracellular recycling. Although the in vitro properties of the two proteins are similar, differences between the phenotypes of the null allele mutants suggest that they play different roles in vivo.
View Article and Find Full Text PDFPurified DNA translocases Rdh54 and Rad54 can dissociate complexes formed by eukaryotic RecA-like recombinases on double-stranded DNA. Here, we show that Rad51 complexes are dissociated by these translocases in mitotic cells. Rad51 overexpression blocked growth of cells deficient in Rdh54 activity.
View Article and Find Full Text PDFThe Saccharomyces cerevisiae RDH54-encoded product, a member of the Swi2/Snf2 protein family, is needed for mitotic and meiotic interhomologue recombination and DNA repair. Previous biochemical studies employing Rdh54 purified from yeast cells have shown DNA-dependent ATP hydrolysis and DNA supercoiling by this protein, indicative of a DNA translocase function. Importantly, Rdh54 physically interacts with the Rad51 recombinase and promotes D-loop formation by the latter.
View Article and Find Full Text PDF