Publications by authors named "Anastasiya Agdzhoyan"

Currently available genetic tools effectively distinguish between different continental origins. However, North Eurasia, which constitutes one-third of the world's largest continent, remains severely underrepresented. The dataset used in this study represents 266 populations from 12 North Eurasian countries, including most of the ethnic diversity across Russia's vast territory.

View Article and Find Full Text PDF

Background: Information about the distribution of clinically significant genetic markers in different populations may be helpful in elaborating personalized approaches to the clinical management of COVID-19 in the absence of consensus guidelines.

Aim: Analyze frequencies and distribution patterns of two markers associated with severe COVID-19 ( and ) and look for potential correlations between these markers and deaths from COVID-19 among populations in Russia and across the world.

Methods: We genotyped 1883 samples from 91 ethnic groups pooled into 28 populations representing Russia and its neighbor states.

View Article and Find Full Text PDF

Western Kazakhstan is populated by three clans totaling 2 million people. Since the clans are patrilineal, the Y-chromosome is the most informative genetic system for tracing their origin. We genotyped 40 Y-SNP and 17 Y-STR markers in 330 Western Kazakhs.

View Article and Find Full Text PDF

Background: Predicting the eye and hair color from genotype became an established and widely used tool in forensic genetics, as well as in studies of ancient human populations. However, the accuracy of this tool has been verified on the West and Central Europeans only, while populations from border regions between Europe and Asia (like Caucasus and Ural) also carry the light pigmentation phenotypes.

Results: We phenotyped 286 samples collected across North Eurasia, genotyped them by the standard HIrisPlex-S markers and found that predictive power in Caucasus/Ural/West Siberian populations is reasonable but lower than that in West Europeans.

View Article and Find Full Text PDF

The indigenous populations of inner Eurasia-a huge geographic region covering the central Eurasian steppe and the northern Eurasian taiga and tundra-harbour tremendous diversity in their genes, cultures and languages. In this study, we report novel genome-wide data for 763 individuals from Armenia, Georgia, Kazakhstan, Moldova, Mongolia, Russia, Tajikistan, Ukraine and Uzbekistan. We furthermore report additional damage-reduced genome-wide data of two previously published individuals from the Eneolithic Botai culture in Kazakhstan (~5,400 BP).

View Article and Find Full Text PDF

We have analyzed Y-chromosomal variation in populations from Transoxiana, a historical region covering the southwestern part of Central Asia. We studied 780 samples from 10 regional populations of Kazakhs, Uzbeks, Turkmens, Dungans, and Karakalpaks using 35 SNP and 17 STR markers. Analysis of haplogroup frequencies using multidimensional scaling and principal component plots, supported by an analysis of molecular variance, showed that the geographic landscape of Transoxiana, despite its distinctiveness and diversity (deserts, fertile river basins, foothills and plains) had no strong influence on the genetic landscape.

View Article and Find Full Text PDF

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny.

View Article and Find Full Text PDF

Y-chromosomal haplogroup G1 is a minor component of the overall gene pool of South-West and Central Asia but reaches up to 80% frequency in some populations scattered within this area. We have genotyped the G1-defining marker M285 in 27 Eurasian populations (n= 5,346), analyzed 367 M285-positive samples using 17 Y-STRs, and sequenced ~11 Mb of the Y-chromosome in 20 of these samples to an average coverage of 67X. This allowed detailed phylogenetic reconstruction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn5h20itvdhq49mravsthvm74o641la29): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once