Cell senescence seems to be an ambivalent biological phenomenon in many aspects. At the cellular level it is considered as an irreversible cell-cycle arrest commonly caused by the DNA damage. Senescent cells harbor a lot of impairments in various intracellular systems.
View Article and Find Full Text PDFHormone-regulated proliferation and differentiation of endometrial stromal cells (ESCs) determine overall endometrial plasticity and receptivity to embryos. Previously we revealed that ESCs may undergo premature senescence, accompanied by proliferation loss and various intracellular alterations. Here we focused on whether and how senescence may be transmitted within the ESCs population.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) hold a great promise for successful development of regenerative medicine. Among the plenty of uncovered MSCs sources, desquamated endometrium collected from the menstrual blood probably remains the most accessible. Though numerous studies have been published on human endometrium-derived mesenchymal stem cells (hMESCs) properties in the past years, there are only a few data regarding their genetic modulation.
View Article and Find Full Text PDFThe unique capacity of mesenchymal stem cells (MSCs) to migrate to the sites of damage, following intravenous transplantation, along with their proliferation and differentiation abilities make them promising candidates for MSC-based gene therapy. This therapeutic approach requires high efficacy delivery of stable transgenes to ensure their adequate expression in MSCs. One of the methods to deliver transgenes is via the viral transduction of MSCs.
View Article and Find Full Text PDFIntracellular calcium ([Ca]) has been reported to play an important role in autophagy, apoptosis and necrosis, however, a little is known about its impact in senescence. Here we investigated [Ca] contribution to oxidative stress-induced senescence of human endometrium-derived stem cells (hMESCs). In hMESCs sublethal HO-treatment resulted in a rapid calcium release from intracellular stores mediated by the activation of PLC/IP3/IP3R pathway.
View Article and Find Full Text PDF