Publications by authors named "Anastasie Sigwalt"

Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events.

View Article and Find Full Text PDF

Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel's law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates.

View Article and Find Full Text PDF

Since more than a decade ago, Saccharomyces cerevisiae has been used as a model to dissect complex traits, revealing the genetic basis of a large number of traits in fine detail. However, to have a more global view of the genetic architecture of traits across species, the examination of the molecular basis of phenotypes within non-conventional species would undoubtedly be valuable. In this respect, the Saccharomycotina yeasts represent ideal and potential non-model organisms.

View Article and Find Full Text PDF

It is now clear that the exploration of the genetic and phenotypic diversity of nonmodel species greatly improves our knowledge in biology. In this context, we recently launched a population genomic analysis of the protoploid yeast Lachancea kluyveri (formerly Saccharomyces kluyveri), highlighting a broad genetic diversity (π = 17 × 10(-3)) compared to the yeast model organism, S. cerevisiae (π = 4 × 10(-3)).

View Article and Find Full Text PDF