Publications by authors named "Anastasiah Ngigi"

The use of antibiotic pharmaceuticals in chicken husbandry has risen steadily over time. Antibiotic residues in chicken meat poses risks to human health in addition to their contribution to the advancement of antibiotic resistance. Despite the increased use of antibiotics in chicken farming in Kenya, assessments of the residues and human exposure have not been conducted.

View Article and Find Full Text PDF

The continued frequent detection of pharmaceuticals in the environment is of major concern due to potential human and ecological risks. This study evaluated 30 antibiotics from 8 classes: sulphonamides (SAs), penicillins (PNs), fluoroquinolones (FQs), macrolides (MLs), lincosamides (LINs), nitroimidazoles (NIs), diaminopyrimidines (DAPs), salfones and 4 anthelmintics benzimidazoles (BZs) in surface water and sediments from River Sosiani in Eldoret, Kenya. Samples were collected during the wet and dry seasons and subjected to solid phase extraction using HLB cartridges.

View Article and Find Full Text PDF

Manure from medicated livestock contains pharmaceutical antibiotics and antibiotic resistance genes (ARGs). Bioavailable antibiotics trigger further ARGs amplification during manure storage. It was tested whether biochar lowers the bioavailability of the antibiotics sulfamethazine (SMZ), ciprofloxacin (CIP), oxytetracycline (OTC) and florfenicol (FF) in manure and the amplification of sul1 and tet(W) ARGs.

View Article and Find Full Text PDF

The occurrence of 17 antibiotics belonging to sulfonamides, β-lactams, macrolides and aminoglycosides classes, and trimethoprim in raw hospital wastewater, wastewater treatment plant (WWTP), and surface water was determined. Residual antibiotics were quantified by LC/MS/MS. Residues of antibiotics in hospital wastewater were 3-10 times higher than that detected in WWTP and surface water.

View Article and Find Full Text PDF

Carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) has been used within the Nzoia River Basin (NRB), especially in Bunyala Rice Irrigation Schemes, in Kenya for the control of pests. In this study, the capacity of native bacteria to degrade carbofuran in soils from NRB was investigated. A gram positive, rod-shaped bacteria capable of degrading carbofuran was isolated through liquid cultures with carbofuran as the only carbon and nitrogen source.

View Article and Find Full Text PDF

Two organic amendments, filter mud compost and Tithonia diversifolia leaves generated within a sugarcane growing area were used to enhance the degradation of chlorpyrifos in soil. Filter mud compost and T. diversifolia leaves significantly enhanced degradation of chlorpyrifos in soils (p < 0.

View Article and Find Full Text PDF

The s-triazine herbicide hexazinone [3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione], is widely used in agriculture for weed control. Laboratory biodegradation experiments for hexazinone in liquid cultures were carried out using sugarcane-cultivated soils in Kenya. Liquid culture experiments with hexazinone as the only carbon source led to the isolation of a bacterial strain capable of its degradation.

View Article and Find Full Text PDF

This study elucidates the effects of carbon amendment on metabolic degradation of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) and total microbial biomass in soil. Degradation of (14)C-ring-labelled atrazine was monitored in laboratory incubations of soils supplemented with 0, 10, 100 and 1000 μg g(-1) sucrose concentrations. An experiment to determine the effect of carbon amendment on total microbial biomass and soil respiration was carried out with different concentrations of sucrose and non-labelled atrazine.

View Article and Find Full Text PDF

In this study soils from sugarcane-cultivated fields were screened for bacterial species capable of atrazine (6-chloro-N²-ethyl-N⁴-isopropyl-1,3,5-triazine-2,4-diamine) degradation due to long exposure of the soils to this herbicide. To enrich for atrazine degraders, Minimal Salt Medium containing atrazine as the sole N source and glucose as the C source was inoculated with soils impacted with this herbicide and incubated. Bacterial growth was monitored by measuring optical density.

View Article and Find Full Text PDF

This study elucidates the effect of fluctuating soil moisture on the co-metabolic degradation of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine) in soil. Degradation experiments with (14)C-ring-labelled atrazine were carried out at (i) constant (CH) and (ii) fluctuating soil humidity (FH). Temperature was kept constant in all experiments.

View Article and Find Full Text PDF