Publications by authors named "Anastasia Zlatanou"

Mutagenesis is a hallmark and enabling characteristic of cancer cells. The E3 ubiquitin ligase RAD18 and its downstream effectors, the 'Y-family' Trans-Lesion Synthesis (TLS) DNA polymerases, confer DNA damage tolerance at the expense of DNA replication fidelity. Thus, RAD18 and TLS polymerases are attractive candidate mediators of mutagenesis and carcinogenesis.

View Article and Find Full Text PDF

Acylpeptide hydrolase (APEH) deacetylates N-alpha-acetylated peptides and selectively degrades oxidised proteins, but the biochemical pathways that are regulated by this protease are unknown. Here, we identify APEH as a component of the cellular response to DNA damage. Although APEH is primarily localised in the cytoplasm, we show that a sub-fraction of this enzyme is sequestered at sites of nuclear damage following UVA irradiation or following oxidative stress.

View Article and Find Full Text PDF

The mechanisms by which neoplastic cells tolerate oncogene-induced DNA replication stress are poorly understood. Cyclin-dependent kinase 2 (CDK2) is a major mediator of oncogenic DNA replication stress. In this study, we show that CDK2-inducing stimuli (including Cyclin E overexpression, oncogenic RAS, and WEE1 inhibition) activate the DNA repair protein RAD18.

View Article and Find Full Text PDF

The role of deubiquitylase ubiquitin-specific protease 7 (USP7) in the regulation of the p53-dependent DNA damage response (DDR) pathway is well established. Whereas previous studies have mostly focused on the mechanisms underlying how USP7 directly controls p53 stability, we recently showed that USP7 modulates the stability of the DNA damage responsive E3 ubiquitin ligase RAD18. This suggests that targeting USP7 may have therapeutic potential even in tumors with defective p53 or ibrutinib resistance.

View Article and Find Full Text PDF

Accurate DNA replication is crucial for cell survival and the maintenance of genome stability. Cells have developed mechanisms to cope with the frequent genotoxic injuries that arise from both endogenous and environmental sources. Lesions encountered during DNA replication are often tolerated by post-replication repair mechanisms that prevent replication fork collapse and avert the formation of DNA double strand breaks.

View Article and Find Full Text PDF
Article Synopsis
  • Cells have developed various mechanisms to ensure smooth DNA replication and fix issues when replication stalls, and the study introduces DONSON as a new factor that helps protect the DNA replication process.
  • Researchers discovered biallelic mutations in the DONSON gene in 29 individuals with microcephalic dwarfism, indicating a link between these mutations and the disease.
  • DONSON is essential for maintaining stability at replication forks; its absence leads to DNA damage and increased chromosomal instability, highlighting its critical role in healthy DNA replication and genome stability.
View Article and Find Full Text PDF

RAD18 functions to promote DNA damage tolerance (DTT), a process that ensures faithful genome duplication. Protein ubiquitylation/deubiquitylation is a critical regulatory mechanism controlling DTT. Recently, we have identified the deubiquitylating enzyme USP7 as a component of the DTT machinery that acts to protect RAD18 from proteasome-dependent degradation.

View Article and Find Full Text PDF

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions.

View Article and Find Full Text PDF

Recognition and repair of damaged replication forks are essential to maintain genome stability and are coordinated by the combined action of the Fanconi anemia and homologous recombination pathways. These pathways are vital to protect stalled replication forks from uncontrolled nucleolytic activity, which otherwise causes irreparable genomic damage. Here, we identify BOD1L as a component of this fork protection pathway, which safeguards genome stability after replication stress.

View Article and Find Full Text PDF

Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO-dependent DNA damage response (UbS-DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N-terminal region of BLM and subsequent BLM binding to the ubiquitin-interacting motifs of RAP80.

View Article and Find Full Text PDF

Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an S phase- and USP1-independent manner.

View Article and Find Full Text PDF

Through the action of multiple sensors, mediators, and effectors, the DNA damage response (DDR) orchestrates the repair of DNA damage to ensure maintenance of genomic integrity. Recently, in addition to phosphorylation, other post-translational modifications such as ubiquitylation and SUMOylation have emerged as important regulators of the DDR network. Two recent papers highlight the importance of SUMO modifications of proteins that execute the response to DNA damage.

View Article and Find Full Text PDF

Human DNA polymerase iota (poliota) is a unique member of the Y-family of specialised polymerases that displays a 5'deoxyribose phosphate (dRP) lyase activity. Although poliota is well conserved in higher eukaryotes, its role in mammalian cells remains unclear. To investigate the biological importance of poliota in human cells, we generated fibroblasts stably downregulating poliota (MRC5-pol iota(KD)) and examined their response to several types of DNA-damaging agents.

View Article and Find Full Text PDF

CK2 was the first protein kinase identified and is required for the proliferation and survival of mammalian cells. Here, we have identified an unanticipated role for CK2. We show that this essential protein kinase phosphorylates the scaffold protein XRCC1 and thereby enables the assembly and activity of DNA single-strand break repair protein complexes in vitro and at sites of chromosomal breakage.

View Article and Find Full Text PDF