Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron (MN) disease characterized by progressive MN loss and muscular atrophy resulting in rapidly progressive paralysis and respiratory failure. Human mesenchymal stem/stromal cell (hMSC)-based therapy has been suggested to prolong MN survival via secretion of growth factors and modulation of cytokines/chemokines. We investigated the effects of hMSCs and a hMSC-conditioned medium (CM) on Cu/Zn superoxidase dismutase 1 (SOD1) transgenic primary MNs.
View Article and Find Full Text PDFImportance: Intravenous edaravone is approved as a disease-modifying drug for patients with amyotrophic lateral sclerosis (ALS), but evidence for efficacy is limited to short-term beneficial effects shown in the MCI186-ALS19 study in a subpopulation in which efficacy was expected.
Objective: To evaluate the long-term safety and effectiveness of intravenous edaravone therapy for patients with ALS in a real-world clinical setting.
Design, Setting, And Participants: Multicenter, propensity score-matched cohort study conducted between June 2017 and March 2020 at 12 academic ALS referral centers associated with the German Motor Neuron Disease Network.
Amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP) are motor neuron diseases sharing clinical, pathological, and genetic similarities. While biallelic SPG7 mutations are known to cause recessively inherited HSP, heterozygous SPG7 mutations have repeatedly been identified in HSP and recently also in ALS cases. However, the frequency and clinical impact of rare SPG7 variants have not been studied in a larger ALS cohort.
View Article and Find Full Text PDFWe have previously shown that total knockout of fibroblast growth factor-2 (FGF-2) results in prolonged survival and improved motor performance in superoxide dismutase 1 (SOD1 ) mutant mice, the most widely used animal model of the fatal adult onset motor neuron disease amyotrophic lateral sclerosis (ALS). Moreover, we found differential expression of growth factors in SOD1 mice, with distinct regulation patterns of FGF-2 in spinal cord and muscle tissue. Within the present study we aimed to characterize FGF-2-isoform specific effects on survival, motor performance as well as gene expression patterns predominantly in muscle tissue by generating double mutant SOD1 FGF-2 high molecular weight- and SOD1 FGF-2 low molecular weight-knockout mice.
View Article and Find Full Text PDFCellular therapy represents a novel option for the treatment of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Its major aim is the generation of a protective environment for degenerating motor neurons. Mesenchymal stromal cells secrete different growth factors and have antiapoptotic and immunomodulatory properties.
View Article and Find Full Text PDFWe have previously shown that knockout of fibroblast growth factor-2 (FGF-2) and potential compensatory effects of other growth factors result in amelioration of disease symptoms in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive neurological disorder leading to degeneration of cortical, brain stem, and spinal motor neurons followed by subsequent denervation and muscle wasting. Mutations in the superoxide dismutase 1 (SOD1) gene are responsible for approximately 20% of familial ALS cases and SOD1 mutant mice still are among the models best mimicking clinical and neuropathological characteristics of ALS.
View Article and Find Full Text PDFWhile the revised McDonald criteria of 2010 allow for the diagnosis of multiple sclerosis (MS) in an earlier stage, there is still a need to identify the risk factors for conversion to MS in patients with clinically isolated syndrome (CIS). Since the latest McDonald criteria were established, the prognostic role of cerebrospinal fluid (CSF) and visual evoked potentials (VEP) in CIS patients is still poorly defined. We conducted a monocentric investigation including patients with CIS in the time from 2010 to 2015.
View Article and Find Full Text PDFThe 2010 McDonald criteria were developed to allow a more rapid diagnosis of relapsing-remitting multiple sclerosis (MS) by only one MRI of the brain. Although cerebrospinal fluid (CSF) is not a mandatory part of the latest criteria, the evidence of an intrathecal humoral immunoreaction in the form of oligoclonal bands (OCB) is crucial in the diagnostic workup. To date, the impact of the 2010 McDonald criteria on the prevalence of OCB has not been investigated.
View Article and Find Full Text PDF